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-. AUTHOR'S NOTE

CHAPTER 1, "Testing of Hypotheses," is part of the material

being prepared in connection with a contemplated handbo-ok or monograph

on Statistical Techniques in Life Testlng It is in the nature of a

preliminary report on one aspect of the over-all =ndortaiking-

Earlier reports were:

Technical Report No. 1, "Statistical Dovelopments in Life

Testing," June 11 1957,

Technical Report No. 2, "Tho Exponential Distribution and Its

Role in Life Te3ting," May 1 1958o

"An Out:ino ol Three Chapters of a Handboot on Statistical

Methods in Life Testing," June S, 1958.,

Further aatel&2. dealino with other -a;,.Ect3 of life testing

is in preparation,

Comments and suggestions are invited.

Benjamin Epstein
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2.1

Chaiter II

Testing of y&thes

Introductory remarks: In the following we shall assume that the under-

lying p.d.f, of the life-time X is described by

f(xO;) z e" t x> 0 , Q > 0

Our object is to test various hypotheses regarding the mean life

Q on the basis of censored, truncated, or soquontial procedures. Various

tables and grapha are given and in the appendix,. ikpropriate references.

and proofs appear.
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EroIgn: Give a censored life test procedure which will have the property

that the probability of rejecting a lot with mean life 0 a 9 is equal

to K . Furthermore give the operating characteristic (O.C.) curve for

this procedure; i.e., plot L (9), the probability of accepting a lot

having mean life 0, against 0.

Solution: A censored life test involves terminating the test after a

preassigned number, r, of failures occur. More precisely, n items

are drawn at random from a distribution whose p.d.f. is given by (1) and

placed on life test. Observations become available in order; ioeo,

z1, n :S x2, n .. <Xr n C n n , where by xi,n is meant the time

when the i'ta failure occurs, Experimentation is terminated as soon as

the r'tn failure occurs.

In the non-replacement case (where failed items are not replaced), it

can be shown that an estimate of 0 which is "best" in the sense that it

is maximum likelihord, unbiased, minimum variance, efficient and sufficient

is given by

(2) a rn (n-r) xr / r

In the replacement case (where one immediately replaces a failed item

by a new one) the approtriate "best" estimate is given by

(3) rn = nzr,/n A

where by xr n is meant the total tine (measured from the beginning of the

life test) to observe the r'th failure and where the sample also n in

maintained throughout the life test,

The following results are very u4eful:

(1) The p.d.f. of 8r a in either the replacement or non-replacement

case is given by
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(4) f r(Y) W (r/0) "Yrr l 0 -r Y / O  y 0

z 0, elsewhere

and further the random variable W v 2rr4 n /0 is distributed as chi-square

with 2r dogrees of freedom (X2(2r)).

(ii) The expected waiting time for the r'th failure is given by

r
(5) E(X 1 n) 1 G _ / (n-J+l)

ri-i

in the non-riplacement case and by

(6) F,(x r/n

in the replacement case.

From (4) we can now write down a test procedure having the required

property that the probability of rejecting a lot with mean life 0 = 00

is equal to o1 (such a procedure can also be said to have size, type I

error, or producer's risk o )o The region of acceptance is given by

(7) G~~r~n > C Q 0 ~ Q,. (20/2r,

where we define the constant X ? (2k) by the equation

(8) Pr ( )(2 (2k) > 2( ) r

The OoC, curve associated with this procedure ie given by

(9) L(Q) a Prob(,r n > 0 Xr,_(r)/2rQ)

It is convenient to choose units in such a way that 0 = 1, If

this in donse (7) and (9) becomerespectively,
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ar,n \1."K

(9') L(O) = Pr (( 2 (2r) > 2- (2r).O)o

In Table 1 we 4 give the values of 1(2r)/2r for r = 1(1)1O(5)

30(10)50(25)100 for , a a01,9 .05, ., o25, and .50. The untabulated values

corresponding to r < 100 can be found from tables of chi-square, For

values of r > 1000 the normal approximation to chi-square, or the more

refined approximations duo to Fisher or to "'ilson and Hilferty can be used.

In Tables 2 (a),(b),(o),(c),(e) we give the valuer of Q which are

accepted with probability p - 99, .95v .90, ,75, 050, ,25, ,10, 05, and

001 if a lot with 0 1 is accepted with probability .99, o95 90, o75 and

.5Orespectively. 0. C., curves based on Tebles 2 (a), (b), (c), (d), and

(o) are given for the r values noted above in Figires 1 (a) through 1 (e).

-- All of the test procedures given by (7) ha-e the property that

L(Q) = 1-o< independently of n. Changes in n affect E(Xren)* the

expected waiting time to observe the r'th value in a sample of size n.

The appropriate choice of n for a given r and hence fixed type I error,

oc , depends on economic considerations and involves balancing the cost

of increasing n, with the gains due to decreasing the expected waiting

time of the experiment. To facilitate the making of such Judgments we

give values of E(Xr n ) for r a 1(1)n and n a 1(1)20(5)30(10)100 in

Table 3 (a) and for r = 1(1)10(5)30(10)50(25)100 and n = kr, with

k = 1(1)10(10)20 in Table 3 (b).

It is particularly interesting to compare the following two procedures:

(1) a test based On 8rr where r items are placed on test and where

one waits for all r items to fail and (2) a test based on 0 where

f n items are placed ou test and where one waits only for the first r



2,5

failures to occur. From (5) the expected waiting times in the non-replace-I t mat case are given by

r r
E(Xr)- l/j and E(Xr) 0 1/n-j.l,, respectively.

r,r 4- n L
Jul Jul

Thus the ratio r -(X n )/E(Xr r ) is a meavure of the *xPected

saving in time due to uaing the second procedure rather than the first

procedure. Values of 'A can bo computed rueadily from Tables 3 (a)r~n

and 3 (b). A brief tabIe is givon in Table 3 (c)0 ,, It follows from (6)

that the expected vaiting times in the replacement case are given by

E(Xr,r)= 0 and V(X rt1) = rPn/n In this case tht ratio e- rLn is simply

E )/E(x )r,,n n rer n

Numerical-Exe o: Let ue coritpare tL avera~ge length of time needed to

observe (a) the failure of the first 2 out of 4 items under test with

the average length of time required to observe, (b) the failure of 2 out

of 2 itemia The answ~er is E(X 2 4 )/E(X ~ 2- / I - 7/1.8 - 3889

Hence it will take on the average only 7/18 as long to observe the first

2 out of 4 items as 2 out of 2 If life is exponential wo know that tests

baced on either (a) or (b) have the same 0. C. curves; however, the time

required for.(a) is on the average substantially shorter than for (b)

Caverage tima for (a) is about 40' of the average time required for (b)].

Remark: It was noted above that for given type I error Cor producer's

risk)cc and atopping number r. all test procedures (7) have the same

O. C. curve independent of n. ';Ve wish to give a method for choosing

a best procedure from this class of procedures. It is clear that for

fixed c-, and r, increasing a will on the onj hand cut the expected

vaiting time, but will, on the other hand, increase the cost due to placing
of(ore items on test. More precisely, if c1 is the costAwaiting per hour
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and c2  is the cost of placing an item on test, then the total expected

cost associated with a plan based on (7), assuming that the mean life is

close to eo ,is given by c1  e0  + + " ) + c2n in the

non-replacement case and c1  0o + c2n in the replacement case. It
o n

is clear that there exists an n which makes this quantity a minimum and

that this minimum depends only on the ratio c2/c1. Table 3 (a) is useful

in reaching a conclusion as to the best n.

To illustrate the point in the non-replacement situation consider a

case where r s 10, 0 a 1000 hrs, c1 a $1 per hour, c2 = $100 per item

tested. Then we have the following table:

Cost of items

n Expected cost due to waiting tested Total cost

10 2929 1000 3929
11 2020 1100 3120
12 1603 1200 2803
13 136 1300 2646
].4 1168 1400 2568
15 1035 1500 2535
16 931 1600 2531
17 87 1700 2547

The minimum is attained for n z 16.

It is easily verified that for the given values of r, 00, cl, and

c2, the optimum n is 10 in the replacement case.

We have just given a numerical example. It is of interest to give a

general method for finding the optimum n. In the replacement case the

optimum n is the integer nearest to c l  G r + 1 (or either
c2

m or m + 1 if Cl 0 0 r +1 m 2m+l for some integer m).
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Ti the non-replacement case, we choose the smallest n , such that

i(Xr'n) - E(1 rn+l) < c2 In the above numerical example, c2/c1 0 0 = .1

and - E(X10 ,1) >.l1 for n 10, l1, 12, 13, 14, 15, and
E(X E(X <.1 for n>16. Therefore, the appropriate n x 16.

10,n 10,n+l

The procedures described by (7) depend on knowing the first r values

xI  x2 < .. , < xr . It is interesting that if the underlying distribution

is exponential, then one can find a truncated procedure having almost pre-

cisely the same O.C. curve as the # procedure. The only requirement

that this be so is that n be moderately larger than r. The advantage

of such procedures is that they depend only on an extremely simple observa-

tion, the time of failure of the r'th item. Procedures of the form,

accept if Xr, n > T and reject otherwise, are very simple to interpret.

In words, the rule of action is to stop experimentation at mmn- [x rn;T]

with acceptance of the hypothesis if min [x ;T] a T (since in thatrpn

case the r'th failure occurs after time T) and with rejection of the

hypothesis if min(x n;T) - X n (since in that case the r'th failure

occurs prior to time T). Experimentation is actually truncated at T

and at xr, n , respectively, in the two situations.

To derive the truncated procedures one proceeds as follows:

In the replacement case (7) becomes

(10) ,n > 0  (2)I

and (71) becomes (when 0 is normalized as 1)
0

(101) xr,n> X . (2r)/2n.

In the non-replacement case, the exct procedure is obtained by first
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,(++ In the non-replacement case, we choose tho -smallest n , such that

<"c

S(Xrn) (X ) - In the above numerical example, c2/c o  .i
rn+ c 

2o

and E(XIO~n) - E(X~on+) > .1 for n = 10, 11, 12, 13, 14, 15, and

E(Xloon) - E(XlOn+].) < .1 for n > 16 Therefore, tie appropriate n a 16

The procedures described by (7) depend on knowing the first r values

<1 :i < :S . < - S7r - It is interesting that if the underlying distribution

is exponential, then one can find a truncated procedure having almost pre-A

cisely the sawe OC. curve as the 0r,n proceduro. Tho only requirewent

that this be so is that n be moderately Larger than r . The advantage

of such proceduren is that they depend only on an extremely simple observa-

tion, the time of failure of the r'th item. Procedures of the form,

£ r accept if xr n > T and reject otherwise, are very simple to interpret.

In words, the rule of action is to stop experimentation at =in Lr,n ;T3

with acceptance of the hypothesis if mi Lxr,n ;TI a T (since in that

case the r'th failure occurs after time T) and with rejection of the

hypothesis if min(x r,n;) s zr,n  (since in that case the r'th failure

occurs prior to time T). Experimentation is actually truncated at T

and at 'r,n . respectively, in the two situations.

To derive the truncated procedures one proceeds as follows:

In the replacement case (7) becomes

(10) Krn > %oX 2- (2r)/2n

and (71) becomes (when G0 is normalized an 1)

(101 )n > X2_ (2r)/2n.

In the non-replacement case, the e procedure is obtained by first

I;
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t
writing down the distribution of the rt th smallest value in a sample of

size n. In the case where Q 0 le the pd.fo of xrn is given by

tr- -(n-r+l)x(ll) g~r~n~ x  = -1)1(n' 2 re"_7 >O

Therefore0  Pr(Xr n > T) becomes

(12) Pr(Xrn > T) grl 1W
!n CD atX] _ (n-r+l)xdxo

Letting u = 1-eZ ve get

(13) PrGX > T) ,nfl\ /i u rl(l-u)nr du(1)r(r,n = t ; eT)

If we rqit to solve for T in the equation Pr(Xr'n > T) =

we can do this readily from tablos of the incomplete Beta d.atribution

An aitarnative procedure is to use tables of the cumulative binomial

distribution. If one defines B(k;ntp) as

(14) B(k;nzp) =2 b(;n,p), where
V=-o

n -
b(V;ngp) = (y) p (l-p)n , then one can show that (13) becomes

(15) !-B(r-l;n p) = nl P_ -(_~- u

-T 
_

where p = 1-. T . Tc colve the piublem at hand, the procedure is to compute

p so that

(16) 1-B(r-1;np) = E _ (n ) k( 1 -P)nk = .

and then seot T = log -

An alternative approximate procedure in the non-replacement case

which has been shown to be extremely close to the exact procedure is

obtained as follows:
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In (7) or (7) replace the unbiased estimator frn by Br,n xrn

where rn a 1E(X r.), It has been observed that if n is sufficiently

larger than r, then the O.Co curve resulting from using the acceptance

region 8 rn Xrn > C virtually coincides with the QoC. curve associated

with 0 rn > C. Consequently a test procedure having virtually the same

0,C. curve as (7) or (71) to given by

12 2
(17) 2rn> T = OX ., (2r)/2r6Rn =0 1-Xa-e-(2r)E(X r)/2rr=,n rt g oY

or

(17')~ Z >~.(2r)I2r~g X2E rn

in the normalized case 0 = 1.
0

In Table 4 we give values of 1 (2r)E(Xrn )/2r for the values

f of r and c. covered in Table 1 and for various values of n. If r

and n are sufficiently large) then n ).log( )o This approxi-
10r~nn-r

mation is useful for computing some values of T when r and n lie

outside Table 4.

Remark: An approximate formula for pe satisfying"(k)p k(1-p )n-k.
kar

is found by solving for p in the equation:

log1 2 (2r)E(X )/2r. Solving for p one gets:

l r,n
20 k~lp .20-k=

Example: r 10 n = 20. Find p such that )P
k=lO

for -. * .01, .05# .109 .25, .50. In column 2 we give the approximate
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value of po ,as obtained by the formula, and in column 3 wo give the

value of p computed by interpolation from the 1rvard tables of the

Cumulative Binomial Distribution.

oc. p (approximate) p(exact)

.01 .241 °239

.05 .305 o302
110 -340 .3
.25 A04 .402
°50 .476 6475

Numerical Examples:

1. Find a censored life test which will accept a lot having a mean life

of 1000 hours wit4 probability .90. The experiment is to be stopped

after one has observed the first 5 failures.

- Solution: In terms of the notation that we have used G = 1000,o0, = .10,

and r = 5. In the non-replacement case n= EXl+x +x+x4+Cn'4)x ]/5
5,n 1 2

and in the replacement case u ax /5. The region of acceptance is
5Mn 5

given by > oo*X,_.,(2r)/2r =(1000) 0)l

= 486.5.

in words, place n items on test. Wait until the first 5 failures occur.

Compute i5,n" Accept the hypothesis that 9 = 1000 if a51n > 486. ,

reject otherwise.

2. If the above procedure is used, find the probability of accepting a

lot having mean life 0 = 500 , 9 a 250.

Solution: The result can be obtained readily from the OC curve in

Figure 1. Analytically we use formula (9). From this we get

I;"

I
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L(500) a r (X2 10 > 2 2(10~ Pr 2(10) > 9.730

L(230) a Prt(iO 2(1) > 41 2 (10) Pr[X2(1o) > 19.46

= .037.

3. If the above procedure is used, for what value of 0 is L(0), the

probability of acceptance = o50? a o10? = .05?

Solution: Using table 2 (c), L(Q) - .50) for 0 521; L(Q) . 10, for

a = - 4; and L(0) = .05, for 0 = 266.

4. Find the expected waiting time in the non-replacement case for the

following choices of n: 5, lOt 20, assuming 0 = 0 z 1000.

Solution: From formula 5 or more easily from Table 3 (a) or 3 (b) we get

E(X5 , 5) 2283, E(X5,10 ) = 645.6, and E(X5 ,20 ) =.279.5.

5,, Same as 4 in the replacement case.

Solution: E(X r n ) a rO o/n

and E(X 5 5 ) = 000T V(X5,10) = 500 and E(X 2o) 0 250.

6. Find a truncated procedure based on X.,10 in the non-replacement

case, with Type I error Gs .10 .

Exact Alutign: Compute p so that

_- 10 )pk 1-)10-ka 1'L. k lp 1
kas5

Using binomial tables we find p - .267. Thu

T a log 1 log - .3106.

Thus the test procedure is: Accept if 2510 > 311 and reject otherwise.

I
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According to (17) an excellent approximation io given by letting

t T "e v(2r)(X )/2r a (486.3) (.6456) a 314

See also table 4 (c) with r a 5 and n w 2r a 0o,

The two values: 311 (exact) and 314 (approximate) are very close°.

7. Find a trunnated procedure based on x in the replacement case,5,10

Solution: According to (10) the appropriate truncation procedure i8 to

accept if

'5,10 > (ioo)(4.865)/2o 243,2

and reject otherwiseo
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A censored toot having the property that its O.C. curve is such that

L(Q 0) a.-oC and L(91 ) <S .

One frequently wishes to design a life test which requires that the

O.C. curve meet the following prescribed conditions:

(i) if 0 = a0 then L() l O.--

(ii) If Q = Olt then L(0I ) <

where 90 > 01

Put izto words we have a situation where lots having mean life

> 0O  are considered desirable; lots having maan life 9 < 0 are

considered undesirables The interval (G 1. 9 ) is essentially a ZoLO

of indifference. The o and R can be thought of as producer's and

consumer's risks or as errors of the first and second kind, respectively,

The p'oblem amounta to chooning r in (7) in such a waV that not

only is L(Q) 1 - oC, but also that L(0I) 6 ,6 From (7) and (9)

it is clear that those two conditions are mot if r in such that

0~ 22)o 1 2 2(r(18) 1 . . .
(18) (2r) (2 or < :( (2r)/ U)

MAore precisely we want the smallest r meeting this condition;

i,e., we want that integer r which is such that the associated O.C. curve

passes most nearly through the points L 0 0* L(9o ) 0 1 - I and

0 1 , L(l) J It is readily verified that as r goes through the

values 1, 2, 3, ,.. the ratio X2 _ (2r)/ (2r) increases monotonically

t to unity. Consequently we can always find an integer r such that

[Q
(19) 2 (r)/ 2 (20 > 1 > 2 r-2)/X2 (2r-2)

0-c
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T4is in the value of r which we want to uso. Using this value of

r,, the region of acceptance

r,n

is ouch that its associated OoC. curve has L(Q 0 io and L(. <

In Table 5 we give the appropriate values of r and of2

for the 16 number pairs (c< 9,) which can be made with the numbers (01,

.05, 10 .25) and the values k 2, 3-- rean 0

_Remark; ft will be noted that the values of r required for k -2

are quiLte large. It is our feeling that,,generally speaking, it is rare

that one would want to work with values of k 2 n case this is so,

however, we should like to indicate how we would find the required r

and 2- (2r)i2r,

Since r must be large we use the approximatiou that X 2 (2r is

d.istributed approximnately normally with mean 2r and standard deviation

2I-- Thus to require that tho O.C. curve be such that

L(Q 1 - and L(Q) with - k '

we choose the smallest integer r ouch that

2 (2r)
=k. This~ meaais, using the normal

approximation, finding r such that

. ... ... .... k -i
2r+ 2C~ /r

o or =2,326, 1.645, 1.282, .674 for o or A = 0l, .05

.10, .25,respectively°

i
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Once we have found r, then _< (2r)/2r is given by

V ~2r - 2q." 17 O<
2r L--1

Numerical E amples

1. Dosign a cersored life test which will meet the folloving condition+t:

Whon 0o = 1500t L(O ) =! 95 and when I 1 500, L(0 I ) < ,.05.

Solution: in the problem k = 0o/C =1 3, e = o05, and '8 - °O5°

Using Table 5, wo oe that r 10 ard the region of acceptance is given

by

"1 (20)/20 =815,
10'n C k95

For this procedu'e L(Qo ) .95 exactly and L(QI ) = ,038

2, ?ind the appropriate r for the case where k 0 / 1 = 1,1 and

Solution: Using the remarkX, we know that

A ,645 + (iL I)(1 645) 21( ,6
r 1( La1) (1 645 N

(34-55)2 = 1194.

Truncated , fe teats having the property that the asoociated

O.C+ curve is such that L(Qo ) > l-w< and L(0 1 ) <
0

IA the previous section we considered censored life tests, i.e.,

testa in which life testing stops after a prescribed number of failures,

r, have occured, 'U'ile such tests do in general have the desirable

effect of shortening experiment time, there is nevertheless the ever

I
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present feature that one does not know precisely when the experiment

will end, since this depends on the random time Xr , n . As a mtter

of fact, it is frequently necessary because of practical considerations

to terminate a life test by a preassigned time TO , a requirement

which censored tests do not meet.

If we wish to truncate en experiment by a preassigned time TO

we are led to truncated life tests in which it is decided in advance

that the life test will be terminated at min(Xron; To ) where

is the time when the ro'th failure occurs and To  is the truncation

time beyond which the life test will not be allowed to run. (Both r o

and TO are preassigned.) If the life test is terminated at Xron

(i.e., r o failures occur before time TO), then the action taken will

be to reject. If the experiment is terminated at time To  (i.e., the

ro'th failure occurs after TO)., then the action in terms of hypothesis

testing is acceptance. It can be shown that three functions characterize

the test procedures in either the replacement or non-replacement case.

These are:

(i) EO(r), the expected number of items failing before reaching

a decision,

(ii) E 0 (T), the expected waiting time to reach a decision, and

(iii) L(e) , the probability of accepting, if the true value of the

mean life is 0

In the non-replacement case

(21) E(r) npeB(ro - 2; n - 1, pe) + ro[l - B(r O- 1; np ]

where P 1 e
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The pmbabillity dAttr1bution of r is givim 'by

(22) Prk1) b(k;n,pg), k - 0.,1,2,. .,r -1

and

(22') ?rrl9) =1 - Dr0-;o

Further, c.ne has, r

0

(214) ZIM LL r(r-zklg) . (r 0 -1;n,paj'
km0

In tt~e replacement, case the pixibabi].ity c~stributlon of r is gtven by

(2.5) Prk ) 1 -0 p(k; ) x ,1 , ,

In (25) a=1 P5 aT , p(k0),) - e k,

andr

k=O

Further, one ties

(26) 19 ir) X.Ar 0 -2; XQ + rf-( Ik~

(27) Q~~) IEe,(r)/a

and

(28) L(9) 0 1;X
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We have Just given formulae for the O°C. curve, the expected waiting

time, and expected number of items failed In the course of reaching a

decision for any preassigned n, To, re+ The problem is to find the

appropriate truncated test (ice., to find r and a) when the trm-

cation time T a is preassigned and the OC. curve is required (for

preassigned type I error os- and type II error / ) t3 be ouch that

L(Q ) > l- and L(91 ) (a . It can be shown that for both the

replacement and non-replacement cases the appzopriato r0 is precisely

the one used in the censored test (20) and tabulated in Table 5, In

the replacement uase, the appropriate value of n one should choose

is given by

(29) n [ X.4 (2r )/-T1

where Cx] meane the greatest integer < x,

In the non-replacement situation a good approximate value of n,

in case O/T °  is substantially more than one (say 2 3), is given

byr 'c
(30) n =[r/(1-e-_TOiC ]

where C = X_ (2o)/2r and where r is the same as in the

replacement case,

In Table 6 (7) we give the appropriate values of n to use in

the replacement (non-replacement) case when o( L .01, .05, .10, ,25;
. ,oz olo o/o0 u. 2 an

.1.i p05, .1l0, .25; 0 1a 2 3, % ,6 and
000

L(Q a) and t(9n; the . curve of the truncated test does come very

0



2.19I .1 ~at this po:*nt and rtwrtiM be mdtni

Isethe ..

r~(Xr.. T) mher. the values of ro art given in Tabl* 5a.0 1
o~on

given by (29), is sch that L(0) 1 - C, but in some caes Is t, happen

that L(9 1 ) may be alightly :1- / This can be avoidod in Wther of two ways,

One way is to give the experimenter the freedom to use, instad of the tuncation

time TO , the slightly larger truncation time T1 - o %2 (2ro)/'n . The test00 0 1- X~
based on min(Xr ;TO) will have L(Qo ) 1- cc. anC L(Q _ /S The other.

oan

Way is to use ("+l) Items throughout the test and 1u adet, instead o)f T0 , the

slightly smaller truncation time T: a g 0 2L (2r)/2(n+lf .. Th: " iat based cc

min(X ;T,) will have L(Q.) - 1-oc and L() </3 In most caces it

Vill be a matter of indifference which procedure one adopts.

Remark 2: A good approxjuate solution for finding a truncated non-replacement

test procedure was given by (30). An alternativep more direct (and a]so more

,lengtb) procedure for finding a truncated non-replace:aent test meeting the

conditions prescribed is to note that such a test is equivalent to a b.nomial

situation in which we test. P0 a 1-.'O against P1 - 1-T.0Ol and want

the O.Co curve to be such that L(po) Z 1-o and L(pl) <13 . Stated in the

language of sampling inspection, we are seeking a sar.ple size n and a rejection

nmber r° such that the remIting O.C. Oc-e has tr.e property that L'p) _! I-

for lots with p 1 po and L(p) -S for lot ith p Zp . The t&t W

calculations necessary to detemine n ad re  am be carried out in any giva,

Situation by using the Binomial Tables or Table of the Incomplete Beta FAMct:U3.

a 1: It is approprate to mention that truncated text procedmres of the
kind cocsidered in this section are giod rulew of action in oos ihere tho

underlYing 1Ifo distribution is not necessarily exponential. More precirelrl,

we mean the folloW.ng: Suppos that an acaeptable lot of eloct-n tubes
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2 20

tta' -n anscoeptable lot Is oae for which the probability of failure before

im t±m is > pl(pl > pc) and suppose we want to O.C. curve to be s

that L(po) .1.0 and L(pl) < 1 . It is clear that the comments made in

remrk 2 are relevant here and that the test procedure involves finding a

sample si e n and rejection number ro  such that we will accept the hypo hesis

that p If the number of defectives (failures before To) in the sale

< (r. - ) end reject the hypothesis that p w p0  (accept p a pl) if the

number of defctives In the sample >r o  . This test procedure clearly is

trunc.ated &nd lias, tbe rcperty that L(po)> 1-a for M distribution Fc(x;

which is such that SO dr 0(x) :Sp and L(p1 ) < 13 for an~y distribution F I x)
S vUJTL I o 11 (F x) > P1  . If, in particular, Fo(x) . 1-eoX/9 ,

w . TVa /).6g and ,o(x)l .1*/o , it e /log

the t-:.it procedure just des2ribed has the property that L(Oo) and

L(e 1) < 0 . Re-calling fthat the rule of action can be written as acc it

min(Xr on ;To) u. P and reect If min(Xr n;To) X roPUa ve have precisely

' the truncated procedure which one gets in the exponential case when testing

00 egainst el with L(9 0 )> 1- and L(9 1 )< . But from the pre eding

argumsnt the test proceLure is distribution free in the sense that it is the

appropriate one to use when we wish to distinguish between two distributions

o(x) and F,(x) with

OdF0(x) -: Pc l-eTO01% and j- P(x) 1 0 l-e

For aU u ae, ias)e 1- and L(7 1 ) <13 . In this connection it

13 useful to point out how Table 8 can be used to design single sample plans

vich are such that wben p -p0 , the probability of acceptance equals 1-0

Nou-a
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and whOU P = P1 o the probability of rejection is greater than or equal to

1 - P. It is assumed that 0 < po < . 10 and that the producers' risk

O and consumers' risk P are allowed to assume the three values .01, .05, .10,

thus giving rise to nine possible pairs (a , P) . In entering the table, the

ratio p1/p° should be identified with 90/01 . When this is done the

reJection number Is given by r0  and the sample size is given by j-(2r r )/2pjf

where Cx) means the greatest integer < x . In this table, rO  is the upper

number and 2-2ro)/2 Is the lover number.

The justification for the procedure stems from the fact that the probability

of draying a defective item from a lot having fraction defective p is, for

small p , essentially the same as the probability that a failure occurs when

one observes a Poisson process having failure rate p (per unit time) or man

1ifM 1/p , for a unit of observation time. Thus, drawing a sample of size N

from a lot having fraction defective p can be thought of as drawing one item

at random from a lot whose items follow a life distribution which is exponential

with mean life 3 & 1/p , placing this item under test; replacing it, when it

fails, by a new item drawn form the lot, and terminating experimentation either

as soon as r failures occur or when T a N units of time have elapsed,
00

vhichever comes first. This means placing n - 1, Go - 1/p0  In formula (29)

and getting the sample size N To , .(2ro)/2P •
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1. Find a truncated replacement plan for vbieh To - 500 hours, which will

aCCet a lot with mean life = 10,000 hours at least 93 per cent of the time

and reje t a lot with mean life 2000 hours at least 95 per cent of the. time.

Qonpute L(G),%q(T) , and 3,(r) at 0 = 10,000 and 0 - 2000, respectively.

Solution; Inthis case % o10,000, m 2,000, 0 = es.05.

Since %/, - 5, it follows n Tble 5 that ro 5 - F tbe 6,

we find that corresponding~ to 00O'l -m 5 , Oo,/T - 20, (. P3 .051 n w 39

Thus the following truncated replacement plan meets tie requirements: Start

the life test with n - 39 items. As soon as one iten fails, replace it by

a new item, Acnept the lot if mtn(XJ 39; 500) - 500 and reject the lot if

min(X 5 , ;500) = X ,3. If the lot Is rejected, experimentation is stopped at

S5039 , the time of occurrence of the fifth failure.

For 9 = 10,000, h- nTo/Q (39)(500)/lO,000 1.95. Using )blina's

Tables, one finds -rm (28) that L(Q) - .9 2. Substituting In (26) and (27),

respectively, gives E,(r) - 1.93 ad 11(T) 49.5. For Q -, 2,000,

?60 - nt - (39)(500)/2,o00 9,75. For this value of 9 , L(Q) * .034,

E(r) . .95, and E(T) - 254.

2. Sane as I excert that we want a non-replacement procedure.

Solution: r° P 5 . According to Table 7, the sale size is n - 42. For

. l0,000, T /9 - .05, and p0 a 1-e - .o49. Using the lBntal Tables

one finds frm (24) that L(9) - .946. Substituting in (21) and (23) gives

0(Vr) , 2.02 and R(P) = 94 • For 9 a 2,000, T w .25. For this

value of , L(9) - .031, 2,(r) - 4.91 , and Zq(T) - 248.

' 3. Conuider the truncated replacemat plan meting the conditions of Problem I.
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For wht values of 9 is L(e) 0 .5t what are 9 (r) snd f oz' thi

value of 0 ?

Solution: To find the 9 such that L(e) .5 means fi ding 1' such that

70;k) .5 . Using the Molina tables9 ve see that thlet mea A .67 •

Since nT0/9, with a u 39#T a500 onefinds 0au180 From(26)

sad (27) we find Z,(r) . 3,97 andZ (T) -2 .

4 Consider the truncated non-replacement plan meeting the conditions of

Problem2 . Forvwat values of 0 is L(O)- a5 ?

Solution: This mans finding p9  such that B(;42,p^) - .5 Using the

Binomial tables this mean p9 a. .ll0 . Bine* p . 1-0s " /  the appropriate

8 v I274 . In~ this problem e.(r) ad 19 (T) will be approximately the same

as in the replacement case. The exact calculations can be made from (21) , (22),

and (23) and are left to the reader.

5, Find a life test having the following properties: It wil accept at

least 957 of the lots for which the probability of failiAg before saw time

TO is < .01 and vil reject at least 901 of the lots for which the proba-

bility of falling before T Is > .05

Solution: In line vith what vM said in Remrk 3 this mans finding the

appropriate saling plan for the special case vhere Po n .01 , PI = 00 ,

a0 .05 ,p I.IO . In this case pi/p -5.,r . -, and fromTable 8, the

saple sin I - (1.37)/.01 . 137. Tbus the life test Is as follows: Place

137 item on test. If 4 or moe failures occur before tim TO g reject. If

3 or fever failures occur before time TO # accept. It should be noted that we

are not making say assumption about the underlying distribution of life.

(:
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Section Is

Beguentia LWfe Tests

It can be shown that sequential life tets are superior to either censored.

or truncated life tests. It is shown in a paper by Epstein and Sobel that the

sequential probability ratio test of A.Wild can be applied to life testing.

The Interesting point now is that decisions can be made continuously in time.

At each moment t , one can decide either to accept, to reject, or to continue

the life test. If we are, as before, testing Ho:9 - 0. against H1  e N

S6 1 (90 > 0 1) with Type I errora and Type II error * P , then the decision

as time unfolds depends on r
(31J B < exp - ) v(t) < A

where A ard B can for all practical purposes be taken as

(32) A- (l-0)/O and B - P/(l-a)

In (31) r is the number of failures observed by time t and V(tl ie

a statistic which equalf the total number of hours lived by all items, failed

and unfailed, up to ti: e t . In the replacement cas.,?

031 V(t) w nt

while in the non-replacement case

(34o V(t) - (n-id) (xi - xi.,) + (n..r) (t-x r )

X +x (n-r)t

In (30 xi denotes the time of the i'th failure.
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Remark: The decision to continue experimentation is made as long as the inequality

(31) holds. As soon as (31) is violated, one accepts No(i.ejO O0) if the

function of t in (31) is<B , and one rejects Ho  (accepts H1 ) if the

function of t in (31) is >A.

Remark: It should be noted that in the non-replacement case a special problem

arises if all n items fail without reaching a decision. This eventuality can

be taken care of in various ways and will be discussed in the Appendix.

If we wish to graph the life test data continuously in time, it is convenient

to write (31) as

(35) -hI + rs < V(t) <h 0 + rs

where ho , .hl , and s are positive constants given by

0

-o0gB log A log --- /
(36) h "i 7 - h1._-1--1  ,ands, I 1

lo 1 O

A good way to describe ho , 1h , and s , is as follows:

h is the intercept on the total life axis of the accept line; -h1  is the

intercept on the total life axis of the reject line; and s is the common slope

of the two straight lines.

The O.C. curve, i.e., the probability of accepting Ho when e is the

true parameter value, is given approximately by the parametric equations

(37) L(e) a Ah _ , e 1
A -Bh

by letting the parameter h run through all real values. The values of L(e)

at the five points au 0 . e 1 , s , 0.o,oc enables one to sketch the entire

curve. These values areprespectively, 0 , , og A/(log A - log B) , 1 -0 ,
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wA l. Note that in vie,, o (36), L(s). log A/(lo A - lot ).w hlh o + h) .n

aiproxinate formula for %,(r) , the expected number of Item to reach a decision.,

vhen e is the mean life is given by

L(8) log B, + - L(0A h2 -L(Q)(hO.h 1 )

(38)
/ 1A 1

If ve let k . 0o/0, the approximate values of e,(r) become particularly

simple vhen - 91 , sor 0o

They are

.. E0 (r) -o log B + (1-) log Al /[log k-(k-l)/k

(39) E(r) - log A log B/(log k)2

E00 (r) [ (i-a) log B o. Ct log A] / [log k- (k-1)]

It can further be shown that Ne(Vt)) the expected amount of total life

observed in reaching a decision is connected vith 36(r) by the identity.

(4o) B )(v(t)) a (r)

in either the replacement or non-replacement case. Since, In the replacement

case V(t) u nt , it follovw that N(t) , the expected waiting time to reach

a decision, is related to 1,(r) by the formulae

(i) (t) 0%rU

(
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In the non-replacement case,

Fn
(42) E(t) 0 Pr(ruk IG)2(Xk,n)

where Ee(Xk,n) is given by (5) . A good pproximatiou for 3,(t) is given by

Practical Appications

It will be convenient to normalize the preceding situation in such a Way

0
that WS 1 2 If this is done it is convenient to calculate once and or all

the values of hO , hl , and a for the cases where 0, - 3 and

for a - .01 , °05, and 0 a .01, .05. In Table 9 , we give the values of

h 0 h1 , and s for each of these cases.

In the event that 0 is not equal. to one and that k a 0 1  2,

one can readily find the appropriate equatlion for V(t) by multiplying h , hI

and a by 00 In Table 10, we give approximate values of E@9 r) for the

values of Q , and k a eo /9 given above.

Numerical EEaMples

1. Find a sequential replacement procedure which will accept a lot with mean

life 90 " 1500 hours, 95 of the time and will reject a lot with mean life

9I w 500 hours, 95% of the time. The constant number of item under test

is n 20. In this case, 8o" 1500 , 1 a 00 ,a .05•

Solution: Substituting in formula (31) we get

1< 3r -t/37.5 < 19
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In this case (35) become

110 + hir < t < 1.0 + 41r

vere t represents the length of ti.e that the life test has been in progreca

and r denotes the number of failures obtained up to time t . The experiment

is continued as long as the inequality holds and in stopped as soon as the in-

equality does not hold. If, at the time of stopping, t is less than the left-

hand member of the inequality, we reject 00 . 1500 (accept e - 500) ; if, at

the time of stopping, t is greater than the right-hand member of the inequality,

we accept 0o - 1500.

2. Compute E,(r) and E(t for 0 , e( 500) , 8 ( 23) , So(- 1500) ,

and ao

Solution: From Table 10 we get go(r) 3 , E9 (r) 6.1 , E (r) - 7.18 ,

E 0(r) . 2.94 , and EO (r) - 0 •

In the replacement case E(t) is found most easily for all values of O(U 0o)

by using (1) , Ee(t) - OE0,r)/n . This gives. E0 (t) - 0 , E (t - 155
1

Es(t) w 295 , and E (t) a 220 . For 0 - c , the expected waiting time is

given by t , where0 e-t/37.5 I 9

This gives t, a E o) - 1 0 .

0,0
Remark__ : More generally, in terms of B , n , ,° and k we find

tee .- e0 log B/n(k-)°

This means that if no items fail by too , ve stop experimentation at too with

acceptance of HO

( 3- Assume that we are testing the hypothesis in problem 1. A sample of size
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20 in placed on test. Items which fail are replaced at once by new items drawn

from the same lot. The experiment is started at time t - 0 and the first five

U failures occur at x. 20.1 hours, X2 10 0.5 n s, X v 121.7 hours,

x4 a 167.4 hours, and x * 179.2 hours, all times "veing measured from t

(a) Verify that no decision has been reached by tLrx: x5

b) Verify that if the sixth failure has not yet occiarred at 315 hourc,

measured from t - 3 , we can stop experimentation at that time with acceptance

of H0 , namely that 90 a 1500.

Solution: We remarked in the rolutiou to (1) that (35 becomes

-- 11-0 + 41r < t < 110 + 41r ..

This region is draun in Figure (2). Toe life test data are plotted by moving

vertically s, long as we are waiting for the nextf a81Z to occur, and moving

horizontally by one uit (in r) at- each failure time. In Figure (2) the

path crossea into the region of acceptance vben r 5 , at time t w o 110

S(41) 3; . Since the sixth failure has not yet occurred we can stop

life testing t -315 hours, with acceptance of H .

Remark: As a matter of factwe happen to know in thts example that the sixth

failure occurs at x6 D 346.7 hours. Thus, as indicated in Figure (2) , we

saved 346.7 - 315 - 31.7 hours by virtue of the act that life test data

were becoming available cortinuously in time.

4. The first six failure times in a saple of 20 (with replacement) are

XI - 19.3 , x 2  5.8, X - .9.9 , x , 96.7, x l5 - 115.2 , x6 a 127.7.

Verify that if, the hypotheses being tested are those in Problem 1, then 9°

is rejected at time x6  127.7 hours.

Solution: X, x 3 , x , and x5 all fall within the region bounded by
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the tvo straight lines. Howeverwaen r * 6 , - 1o + 41r. 136. Since

x6  127.7 < 136 , Ho  Is rejected at tim x6  127.7 hours. A graphical

solution i given in Figure (3) •

Remark: While the acceptance of Ho (e°, a 1500) in 14roblem 3 Is made between

failure times x5  and x6 , rejection of H0 in Problem 4 is made at the

failure time x6 , ,i th an excess over the boundary. This illustrates the point

that acceptance of H0is always made between failure times, whereas rejection

of E° is always made at a failure time.

5. Find a truncated (nonsequential) replacement procedure for testing the

hypothesis in Problem 1, using a c, astant sample size n 0 20.

Solution. Fr-om cur earlier recults dealing with truncated replacement procedures

it can readilr be verified that the truncated replacement procedure meeting the

requirements is

(i) Tf min X.10  407.5J i.07.5 , truncate the experiment at 407.5

with acceptance of Ho

(ii) if min [x 0  i0 7 .5 J - xo , truncate the experiment at xo with

acceptance of H)

The O.C. curves of this test procedure and of the one in Problem 1 are

essentially the same.

6. Compute Z,(r) and Z(t) for the plan in Problem 5 for 9 0.,90,s,o,0

Solution: Using the formulae given in the section on truncated replacement

procedures and recalling that._EXt) oZ (r)/n , one gets Z,(r) 1 10 , 9.93

8.75 ,5.39, 0 and

9e(t) o , 248, 360, 4oa.5, 407.5 for

a 0 0 , 91(500) , s(83) , e0 (1500) , and *., respectively.
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7. Cooere 29(r) 3ad B,(t) for the test procedures obtained s solutions

g0
rto Problem I and 5

Solution: Using the solutioas to Problem 2 and 6 , one has the following

conyarisons:•

Truncated with reoplacement rule a 0 9 M 50.- 0 - 823 - 1500X -o

10 9.93 1 8.75 5.39 0

Sequential rule J 3 6.14 7.18 2.94 0

sE(t)

'Truncated with replacement 9le 9 0 0 - 5001 1,. 823 9 - 15 O - oo

0 248 360 __04.5 407.5

Sequentiel rula 0 5 295 220 no

Theez tables give e fairly good idea of the savings arsociated with adopting a

continuous sequential rather than a truncated plan and are typical of what may be

expected to happen. A graphical comparison of the two procedures is given in

Figure 4 o

8. Find too in Froblem 1 if 0 - 1 a .01

S olution too - 90 log /n(k-1) - 230 • This is about twice the value of

t when C-a. .05 .

9. Find L(s) for all nine combi-r t .1o s of C! a .01 , .05 p .10 and j - .01, .05 ,

.10

Solution: Since L(s) - h3/(ho +  .), it tollows from Table 9 that L(s) is

given by the values in the following Table.
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After vtimpA: yiu7, t1hs becares

W, I . 65r < V(t~) < W , 165r

The life ten~t is~ co!-,4M-r.ed r3> as .V~t: satififie.'wth~q'~tes ns.h

Aes o' as thie -ine 3i I are vinliuted, one accepts R (.e-, 9. 300) if

0

44 165r.
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Iost of the results in sections 1 and 2 of Chapter II are proved
in the following reference:

B0 Epstein and W, Sobel, "Life Twating", Journal of the American Statisti-

ol Association 486-l02, 19533

In Appendix I of that paper it is shown that Z as given by (2)r ,n

is a "best" estimate of 0 in the non-replacement case and the p.d,,fo
(4) is derived. The txpeocted waiting time formula (5) for E(X r,n ) is

derived in Appendix 2 of the reference, The "best" test based on the

first r out of n failures having the prescribed properties that its

OoC. curve is such that L(O O ) = 1- and L(0 1 ) < 5 is obtained

directly from the Neynan-Pearson lemma in Appendix 3 of the referenceo

There is little point in writing down detailed prcofs when they are

readily available to the interested reader in the reference just cited.

There is, however, good reason to give some supplementary material which

is very helpful in understanding the various results. This we shall do

in what follows.

In life teoting problems where one makes the assumption that the

underlying distributicn is exponential, the following results play a

fundamental role:

(1) Given a Poisson process for which the rate at which events

occur per unit time iv' X . Let the random function X(t) ( X(O) is

assumed equal to zero' be the number of events occuring in (Ot) *

Then

( PrXt) - k) - o" (t) /k1 k o00,12,oop 0

N More generally, if t2 > tI then
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-(t .-t )
(ii) Pr(X(t 2)-x(t) k) 1 L (t2 _t )]k/kt,,

(iii) Lot the random variable T be the waiting time until the

first count, ormore generally .the waiting time between sucCessive counts;

then the p.dofo f(t) of T in given by

f(t) - e t >O0

= O, elsewhere

and the cd.f. F(t) is given by

F(t) = O~t < 0

= l-eA t I t > O

In Feller's book on Probability Theory the f mudamental postulates

for the Poisson process ara given as follows: whatever the nuinbcr of

changes during (O,t) the (conditional) probability that during (tt+h)

a change occurs is Xhio(h), aL.d the probability that more than one

change occurs is of smaller magnitude than h.

Proof: i) and (.i) are direct consequences of the definitions of a

Poiason proces.. To p9ova (iii) let T be the random variable repre-

senting the waiting tine until the first count occurs (measuring time

from the origin cf tiU43 t = 0) or the waiting time between two aucces-

sive counts (where we -ould now measure time from the moment when the

last count was recordei mid would wait for the next count), then

(2AA) Pr(T > t) = Pr (0 counts occar in an interval of length t)

= Prob (X(t) 0)= eAt

There fore,

(2A,2) F(t) Pr(T < t) I-Pr(T > t) a i-e At t-% 0

0, elsewhere
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(2A3) ft) (t) a t > 0

= 0 elsewhere,

(2) A Poisson procesa has the following interesting feature by definition,

If 0 < t < o < t< then the random variables

(X(tl) X(t2 ) - X(t 1),0.00 X(tk) X(tkl) I are iatually independent,,

(3) Consider the random variable T distribi tod with p.,dof'

f(t) -)e , t > 0. Then Pr(T > t+ IT > ) = e- Put into words.

If one observos a Poitcon process for a Length of time t and no events

occur, then the probability of no eveits occurring in an additional amount

of time T is ,;iven by e-Ae This i- a special case of (2) where one

considers only the two intervals (0t) and (tjt+ 1).,

(4) Putting (3) into life testing language we havet given that an item

has lived for a :.eneti of timc t, thibn the conditional probability of

surviving an addition.a T time inits is givern by e- But this is,

of course, the 1irobability of en itev: surviving T units ab initio, Thus

if the underlying diclzriblition is exionential, items that have survived

up to any given time 1r. "as gc.od -.3 new" and "have not aged". The proof

is very easy:

(2A,) PrT > iTI T > t) Pr(T > t T)/Pr(T >. t),.

This was the result that we wanxtd to prove,

(5) If n itene each havig tii p.dof. of life f(t) =- At are

placed on test simultanoously W: some tine t = 0, then the first failure

(to occur, tl,, is exponentialay distributed with rate nX Two short

proofs follow.

I



Proof 1: Recalling the connection between' Poisson processes and the

exponential p.d.f., we can Imagine that we superimpose n Poisson

processes each having failure rate A . The result is a Poisson process

with failure rate n X. Hence from (i)(iii) the p.d.f. of the vaiting

time for the first failure is given by fl(t) = n xe' Xt , t > 0 and the

c.d.f. is FI(t) a l-en t , t >0.

Proof 2: An alternative proof is to recall that the first falure is

the smallest in a sample of size n drawn from an exponential p.d.f.

The c.d.f. of the smallest value is given by

l ) ,-(l-F(t))n a 1 t t > 0. This is the result obtained before.

We now use these results to obtain formulae (2) through (6) in

Section 1. First we note that given a Poisson process with rate ,

then the associated waiting time random variable T has expectation

(2A.5) 19(T) Xte" dt

In the life testing context, where T is thought of as life, E(T) a

mean life 0 . Thus items exponentially distributed with mean life

can be thought of as waiting times between successive occurrences of

a Poisson process with rate A: 1

We now obtain formula (2) (non-replacement case) using the ideas of

Poisson processes. Placing n items on test at time t 0 O, with each

item having an exponential p.d.f. with mean life 0, is equivalent to

considering the superposition of n Poisson processes, each having

rate A X • The process obtained by superposition is still Poisson

with parameter A - . The first failure observed at tine xl,n

is exponentially distributed with mean life N and so nxl,n is

exponentially distributed with mean life . Consider nov what happens
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after time At time one has (a-i) items left each with

mean life 0 (this it a consequence of 3 and 4), Thus one is now deal-

ing with a superposition of (n-1) Poisson processes each having rate

au d hence the superposition is a Poisson process with rate

Therefore x2n-c,,n is exponentially diestributed with mean life

and (nol)(X 2,n-xln) is exponentially distributed w'ith mean life Q

Also, xl n  and ( n-'l ) are mutually independonto Continuing in

t h e a m e w a y f 1 n ' x 2 n -x l n ; ' .'; X i n X i -l n ; 9 4 .' X r n -x r -l n

are mutually independent and drawn from exionential distributions having

mean lie- respeCtivrelyo ?j or'

(2n lives -r -! I1

simply tha r random ip-riables yiXi-) 1 1,2$0.00

where x - 1 af'e mut.ially independent with common pod,,fo Y > 0,

Therefore,

r r
(2A.6) =X = X (n!+l)()xj)/r

i=l - i=l

4 r-; iin + (nr)xni / "

is unbiased, The other, properties (such as moximum likohood, unbiasedness,

minimum variance, effitiency, and uufficiency) are proved in the reference

cited above, The pod4fr (4) of 0 follove. directly fr'om. the fact that

the sum of independent randow variables each of which is exponential

follows a Type III dis';ribution. More precisely consider the random

r
variable U . This can be considered as the waiting tire for

e h

the rhevent in a Poisson process with pararetecr = A The ,.Dd~f0

i
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of U is found by using the fundamental postulates for a Poisson proces

Thus

(2A.7) Pr(t < U < t ,t) = Pr(r-1 events occur in (O,t) and 3

event occurs in tt+L,,t)

a Pr[r-l eovents occur in (Ot)3. Pr[l event occurs in (tlt+At)]

t

... (r-l)T

Therefore.the pedef cf U is given by

(2A,8) h(t) a O ; ( °t/Q. t > 0.

But. A U/, and using simple transformations the pdf.~ of ~

becomes (4). To prove (5), we note that

( i (Z-A9) X Qn =xl~ (x2 -I n  + oVo+ (Xn-xrln

= .

U n-i n-r+l

But the TI  are each distributed with the podof£. - o Thereiore,

(2Alo0) E(z ) a: r i n-+ + 7 /~~n-r+l

and thus (5) holdso

Incidentally, since In'a are alvo mutually independent it follows

that

(2A11) r 0n 2 r-/(n-j+l)2

also

(2A.12) cov(Xrn Xsn) =var Xi n  0 -( j+)29 if a

a vwX a 2,.L/(n-j+l) if r so

e n

TUT ...
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(7 For example, suppose a > r. Then

(2A.13) 4 X +(xAI . X )o

Uence

(2A.14) COT (rn; X son )=COT (Xr,n Xr n + (X ,n - r n))

C oOT ( n rn ) + OT (Xr,n; Xs,n X rn

Noting that XrI n  (the waiting time for the rth  failure) and
th th

Xs2n - Xr n  (the waiting time between the rth and t failure) are

independent, we get that

CoT (Xrn; X.n) = Var (Xrn) if s r

Similarly

Coy (Xr,n; ;s,n) Var (X s n) if r> S

Thus (2A,12) 13 proved

Up to this point we have dealt exclusively with the non-replacement

case. If items are replaced as they failthen it is clear that placing

a items on test and replacing failed items at once by new items is

equivalent to observ ig a Poisson process with rate n/c. If

Z1 ,n 1 1 2,n . r, n  are the first r failure times (time being

measured from the beginning of the experiment), then

f z 2n-zlnt... xrn-xnlnJ are mutually independent and iden-

cally distributed with common p.d.f. - The random variables

(S n (z (i i- 1,2,....r) . where xO = 0, are mutually

independent with common p.dof. - Z/1 z > 0. Therefore

(2A*13) = s/r ax,/

in unbiased. Other optimum properties are easy to show and as before

the p.d.,f. of 1 in given by (4).
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To proe (6) note that

1r,n xin +3 "2on X11,3 rju x 1,n

131, 1

But the Z 'a are each distributed with podofe 2/0"

Therefore,

From the mutual indepeneince of the Z 'a it also follows that

va r,n  n n±(2Ao18) Tr 1 ~ £

and

(2A19) COT (X X )  Tar X . if a > r
(2.9 o(r,n 1en n IL

o 2

Tar Xs on = if r> so

(
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lArdadix

go ave seen that in life t::ts where items that fail are not

in a "beet" estimate. It can further be shown that the "tbest"' teat for

a V0P against alternatives 0 < ( is given by an acceptance region

rn > 0. If the Type I error is controlled at a< ,then C = O>X 2 (2/2r.,

tt
Inpaeton this statistic rval tha ifn>here ~i eihedmr

lead one to suspect th.t- estimates based only on 
1rgfl (i~e., the r

failure time only) may be highly efficient when compared with estimates

based on 0 and further that rules of action based on xr.n have OC

curves very close to those based on 0 . This question has been stud.

led in detail in the estimation case in a report by B. Epstein entitled

'Estimates of mean life based on the rt smallest value in a sample of

size n drawn from an exponential distribution", Wayne Univarsity Tenth-

nical Report No. 2, July, 1952. It is shown in this report that a highly

efficient estimato of 0 is given by 'Br.nxron where

A 'a a 1/:jmC If eTp er /r x'rn is an unbiased estimate of 0r

It can be verified reac rely that

(23.2) V (x K~0
WAr~n xr~n r~no

where
2

j (2B.3) A- l/(n-j+1),(...lnjl

r9nn

Efficiency of the estiiator bri i n relative to r is given by
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r(23B4) LIDn UVr'Or1 / vL? lila~

In the report to which we just referred, tables are given for ,nKrn

and Ersn  for n n 1(1)20(5)3O(10)100 an4 r l(l)n. An inspection of

thes tables reveals that E > .9 for n6 <- Furthermore it is shown
r,U n 3.

that

Er n :.9990

" .996o if " .= 2

" > .9893 if "=o3

" > .9784 if " 4

" > .968 if " .= 5

" > 9329 if ,'-o6

" > 8874 if " .=

> 8094 if " 8

" 654 if "= 9

It ha similarly been observed that the O.Co curve resulting from ucing

the acceptance region /4,nzrn > C virtually coincides with the C.

ou.ve asooiated with I > Crn

I
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SApendiz 2 0

A detailed disousion of truncated replacement and non-replacement

tests is given in the following paper:

B. Epstein, "Truncated Life Tests in the Exponential Case", Annals of

Mathematical Statistics a, 555-564, 1954.

Section 2 of thin paper, pp. 555-558ogives proofs of formulae (21)

through (28) inclusive,

Appendix 2 D

Tests of the form O > C considered as truncated tosts,

The following material follows very closely section 3 of the paper

cited in Appendix 2 C,,

W We have seen that when testing H : Q = 9 against aDy simple0 0

alternative 0 = 0 (9 < 0 ), the "best" region of acceptance for H
1 0 0

(in the sense of Neyman and Pearson), based on Lhe first r out of n

ordered observations from an exponential distribution, is of the form

r
> 0 where = xn + (n-r)x J/r in the
r~n ±4 "Ar

non-replacement case and 0n n xrn/r in the replacement case

One could interpret the decision rule 8 > C 'o mean that we
rtn

wait until time Zr n  (the time when the rth failure occurs), then

compute '_ and make the appropriate decision however, in the eventr"9 n

that we are able to observe the life tet continuously.this clearly

wastes information. Indeed, we assert that, if continuous observation
p

is taken into account, we can frequently shorten the waiting time to

reach a decision and reduce the number of items failed. To see this we
r

note that , > C becomes E + (n-r) Xr 3 J >rC in the
n n
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non-replaceennt case and n n > rC in the replacement case,

But - zin + (n-r) zxr ] in the total observed life up to time

in the non-replacement case (note that in the total
i-

life of the r items which failed and (n-r)xr,n  is the amount of

time lived by the (n-r) items which did not fail) and nxr,n is

the total observed life up to time xren  in the replacement case

(note that in the replacement case n items are constantly on test for

a length of time xrn)O Thus accepting H when 0rtn > C is equiv-

lent to accepting H if the total life observed up to time x rni0tn

greater than rC. Suppose now that at some moment t there are

exactly k failures, 0 < k < r-l, and that the observed total life

k
V(t) given by V(t) .. x n + (n-k)t in the non-replacement case

and by V(t) = nt in the replacement case exceeds rC (Note that in

the non-replacement case x is the amount contributed to V(t)

by the k items which failed by time t and (n-k)t is the amount.

contributed by the (n-k) items which have not failec9G In particuiar,

if t a Xrn then V(xr,n ) =ix, n + (n-r)x The formula for

V(t) in the replacement case is obvious.) Since V(t) is monotonically

increasing in t, we know that V(xr) Z V(t) > rC, and therefore we

should stop the life test at time t and accept H More generally a

decision rule having precisely the same O.C. curve as - > C butr~n

requiring on the average fewer failures and a shorter decision time is

based on terminating at total observed life = min (V(x ), rC) (where

both r and C are preassigned), If the experiment is terminated at
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total life V(zr,n)(i. .v if the total life required to observe r

failures is < rC), then the action in terms of hypothesis testing is

the rejection of the null hypothesis. If life testing is terminated

with total life - rC (i.e., if V(xrn)l the total life required to

observe r failures* exceeds rC), then the action taken is to accept

the null hypothesis. (Note that in the replacement case (V(xr n), rC)

rC tbecomes m (x ; -- ) where x is the time of the rth failurebe~sssn(X~ n J  r,n

and is a truncation time.)a

Described in more detail the decision rule is as follows:

(a) Continue life testing so long as V(t) < rC and 0 < k < r-lo

(b) Stop experimentation at time t with acceptance of Ho  as

soon as V(t) > rC and O < k < r-1.

(c6 Stop experimentation at time xren with rejection of H0

. if V(t) < rC for all t < x (Note that acceptance of H takes

place between failure times, and always before time xrr

We now proceed to find sore useful properties of the truncated rule

based on V(t)o To fLnd these properties, we remark that (defining Xon

as zero)

rLUD_. xi~ + (n-r) zr,n =,r- (an..i+l)(Xi n ..l n
C ign ign i-l~n)

i.t

in the non-replacement case an6

% yr.
(2D2) nxr n  n(xi, -x L-l n )

in the replaceme:,it case.

Introducing (as -7as done in Appendix 2A) new random variables defined by

(2D.3) yl =  n and y,. a (n-i+l)(*i,n-xi-ln) i * 2 3,... r

in the non-replacement case and



(2D.4) *l N n' n  and Y . n(xin.xi-l,n)i i 23,...,r

in the replacement case.

V(N) > rC can be written-as

(2D.5) j. > rC.i-1

We saw in Appendix 2A that the yi are mutually independent re.ndom

variables, each distributed with common p,,d f. 1e-Xi x > Ot 0 > 0.

If we interpret Yi a the time interval between the (ji-!)t and

Ith  event in a Poisson process having mean occurrence rate 1 /0'

r
it is clear that > rC, if and only if ks the number of events

isl

in a time interval of length rC. is 0 < k < r-lo If the number of

r
events in such an interval is > r,, then 2- y, rCo Thus the probn-

" " i-i

bility of reaching a decision requiring exactly = k failures is

(2D.6) Pr(f z kIQ) = p~k;Ab.# k 0, o...r-

Pr(r r o) - 1 -.. p(k,-6 a 1 -7a(r l;/)o
k=O

where -440 rC/o The expected number of observations to reach a decision

is given by

(2D.7) BE(f) - kP(-- = k1W + 2Y) + (l

is y(V)) the expected total life in reaching a decision,

is given b

(2D08) So(V(t)) (o

9 0 ,the expected waiting time to reach a decision, is given by
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where 1n in the non-replacement case andAe (Xk,n) : n-J*1

3 (X,) =k /n in the replacement case. In the replacement case

(211.10) Ee((T) x Pr(p =k 1e)l
E v(t))

Finally L(f), the probability of acceptingG aS when 0 is true,

is given by 1(e) u v(r-l; ps). Note that in the replacement case (25)

through (28) coincide with what we have just done if we set To a rC/n

and r a r0 . If this is done then ) - nTo/8 = rC/o : •

Remark: In the above we considered a test based on r,nas a truncated

test. This involved consideration Of total life. The assence of what

was said is a special case of the following: Suppose that the experimenter

wishes to expend no more than total life V* in experimentation and that

he employs the following rule of action: Reject if r failures occur

before total life V* has been used up; accept if fever than r failures

occur by the time one has observed a total life of V*. In the event that

one rejects, experimentation stops at V( T ), the total life observed
ro

up to and including Tro the roth failure time. In the event that one

accepts, the total life observed will be V*. It follows directly from

the properties of Poisson processes that the probability of reaching a

decision requiring exactly P w k failures is

(2D.l) Pr(p k kIe) = p(k; Me), k 0,1,2,.. .,ro-1

[ and

Pr(p : ro e) • 1 - p(k; 148) •1 - (ro-1,,

kIo
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where At. V*/O. 'he expected number of observations to reach a docision

Is given by

(2D.12) 0  %7) j = (r-2;A6 ) + r El-7(r-1;,)]o

3O(Vt)) the expected total life in reaching a decision is givon by

(2D.13) EO(V(t)) - OEQ(/)

and L(M), the probability of accepting 0 00 when 0 is trueis

given by r-

ko

The considerations involving 10  are a special case of what we havor n

just don% with V =rC and r =r,

ADPendij 2 E

As an illustration of the theory presented in Section 3 and Appendix

2 D we consider three test procedures which have virtually the same

operating characteristic curve. Specifically it in assumed that we wish

to test 'a :0 = 1500 hours aginat 111,G, 500 hours with s .= .,o;

i.e., we want L(O) l-= .91 and L(01) =0 = 05 (actually we

have to be satisfied with L(01) < .05). The three procedures are:

(a) 20 items are taken at random from the lot and placed on life

test. Items which fail are not replaced. At each moment t, compute

the total life

V(t) = . xi n . (n-k) t, where k is the number of( Li
failures which have occurred before time t and n = 20 (if i a 0,

define total life as nt)o If V(t) exceeds 8150 for any k, 0 < k5 _ 9,

stop the experiment at time t and accept N (0 150 hours)., O therwise
0
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the action taken is to reject. This test-is equivalent to accepting

If 0io,2 o > 815 and rejecting no if b10,20 < 815. (From

Table 5 we see that if 0o/01 a 3,4a o05, then r z 10 and

4*(2r)/2r a .!0+26. Therefore the acceptance region is

10,20 >(1300(.5426) a.815.)

(b) 20 items are taken at random from the lot and placed on test,,

Failed items are not replaced. If min 5403 a 540 (ie. th

tenth failure occurs after 540 hours), truncate the experiment at 540

hours with acceptance of Hoe If min EX1 0 , 2 0 540J = X1 0 , 2 0  ("e6 the

tenth failure occurs efore 540 hours), truncate the experiment at XlO,20

with the rejection of Ro. (From Table 4a. using r - 10, n = 2r a 20z

we see that the truncation time Ta = 15OO(.363) = 5WO)

(c) 20 items aro taken at random from the lot and placed on test,

An item which fails in replaced at once by a now item from the original

lot. The time X when the I failure occurs is measured from the

beginning of experimentation, If =in CX 1 0 2 0 o407J = 4075.. truncate

the experiment at 407,5 hours with the acceptance of H a If min0

(1 1 0 , 2 0 407.51 = XI 20 truncate the experiment at X10,20 with the

rejection of H (In the replacement case the truncation time T in
given by O. (2r)i12n. This gives 407.5 for the value in this

. problem)

In the table below we give L(O), EO(r), and E(T) for the

e0
tests A, B. and C for. selected values of 0.
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Properties of Thre Test Procedures

MeanzLe J 9 r Eq(T)

_ _ C

250 .0000 oC 000 o0000 10 10 10 167.2 167.2 125.0

500 .038 .04. .038 9.93 9.94 9.93 331-h 3316 28.3

750 .355 .365 055 9.10 9 25 9.10 1h? h53,5 3hlo3

1000 £698 o702 .698 7,68 8.o6 7.68 1i8l.8 509. 38.0

125D .876 .877 .876 639 6.93 6°39 48h,8 529,2 i/909-

1500 .,950 .950 950 5,39 6 ,o2 539 474.7 536.0 WO0z5

1750 .979 1,979 .979 h, 04 5-30 h.61 i466o0  538.3 h06-3

2000 6991 ,;991 .991 4A07 h,,73 h°07 158°3 539d, h07,O

229 .996 995 996 3,62 4.27 3.62 h52-3 539.7 IW07O3

25)0 g9ya V)j .998 3,26 3.88 3.26 l4 73 .39o9 ) 407-h

- - - ... e
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Detailed proofs of the results on sequmtal lift tests sk eed In SelCtic

, of Cheter are a given in the following reference: S. ,Uetein and M. eo1,

"Sequtl Li Tests n the bOpmentlal Case," Annals of 3Mthemtea Statisas

6, 1-93, l95. in section 2 of this reference one vil find a derivation of

ftrinula (31) thrOU* (39) Inclusive. In Section 3 of the reference the basic

identity 3(v(t)) ,e S(r) , relating the expected ment of total lire observed

in reaching a decision ad the expected number of failures, is derlve. %Is formla

holds In paeral, whether or not Item on test are eplaced.

1. Introduction

( It Is Interesting to ask the question: Boy wil truncation of the sequsntlal

life test affect the Type I error a and Type 11 error 13 ? We knmow, from aon-

sideratioas analogous to those of A. Va.1a, that the sequential life test pocedure

based on using (31) will eventually terminate. But this m be Inordinately @a-

pensive. in terms of either the tim Involved In the life test, or in te n of the

nier of Item failea, or both. There are mny alttions where It Is is ale

and even necessary that we place a definite upper limit am eltb^-r tue nmber

or item failed or on the total length of the life test (or, If necessary on both).

In what follows we study how such oae chages the T yp I and p II erros, if

one truncates the sequential lift test in os wa.

Reark: From this point on W lollow elosely comlderatIons In Wa4's book,

pp. 61-65.



1 2. Truncation on the number of Item failbd.

Suppose first that ve set a definite lilt, ro # on the number of items

failed. We can achieve this by truncating the sequential life tet at

r w r6 .i.e., by giving a now rule for the acceptance or rejection of a: 9 M 90

when r° failures have occurred if the sequential life test did not lead

to a decision for r <ro . A simple and reasonable truncation rule after the

r'th failure is the following: If the sequential probability ratio test given0

by (31) does cot lead to a decision for r r , accept :e 90  after the

r 9th failure has occurred if

(2G.1) log B< r° log ! - (oi- 91) V(o) 0

and reject Ho (accept HI: 17 91) after the ro'th failure has occurred if

(2G.2) 0O< r° log (eL- -o 1- ) ¥(xr )< log A
0 10

1 o 0

Truncating the sequential life test after r° items fail will change the

Type I and Type 11 errors. They will no longer be a and P, the Type I and

Type II errors,respectively, in the untruncated sequential case. The effect of

the truncation on the a and.0 depends, of course, on r

hto The larger one makes r , the smaller are the truncation effects an a

00
and .Let us deote the resulting Typ I and Type.11 errors an a(ro0) and

.A(rO) respectively, if the sequential life test Is truncated at r
failures at thl latest. We now derive upper bounds for 0(ro) and A(ro)

To obtain an upr bound for a(ro) ve have to consider the cases in

which tb* truncated life test leds to the rejection of 0 : 9 . go , Vhile

* the on-truncated seqwential life test leads to the acceptance of 1oI
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S0poeia that So holds (i.e., that e * ) , et 0(r o) be the probability

that the sample random function associated with a life test Is such that %he

truncated life test leads to rejection of No . while the non-truncated life test

leads to the acceptance of Ho . Clearly we aee that

(20.3) a(ro) :_ a + So(re).

The reason for the inequality rather than the equality is that there may be

sample random functions associated with life tests for which the truncated life

test leads to acceptance of So # while the non-truncated life test leads to the

rejection of Ho . To obtain an upper bound for a(ro) , we need werely derive

an upper bound for p (ro ) • Assu-ing that IO  is true, P (r o ) is the

probability that the random function associated with a life test is such that

the folloving three conditions hold sinmltaneously:

(2G I)

() logBo< r logO 0) v(t) < log A, for r l,2,...,ro-l
91 91 o0

and for .all t <x ;
10

(ii) o<r o - ( V(x ) < log A ;
O 1 l 9o a

and

(M) When the sequential life test is continued beoang the r0 th failure,

It trne ates with the acceptance of °.

Assuming that 1o Is tru, lt ;o(ro) be the probability that cn ation

(ii) holds, i.e.,

(-.,, Oo, - toko lg g o ,



£ Sims the Probability that (iS) is fulfilled cannot be smaller tha, the pro-

babiitY that conditIas (1) ,(11) aa4 (2.1I) ane fulfilled simdtabeOU94,

we have

(2G.6) o.Qo) z po(ro)

and therefore,

(20.7) a(r) <ai Fo(r.)

Thus a + oCro) is an upper bound for O(r) . Veshov further on that
0 0

(ro)can be computed easily.
To obtalu an upper bound for P(r), let us "SUM that a,: a is

true and let h(ro) then be the probability that the truncated life test leads

to the acceptance of H° while the non-truncated life test leads to the re-'
jection of No  In other words, ft(ro) is the probability (assuon that
* a $1i true) that the mple random function associated with a life test
is such that the following three conditi-ns hold simultaneously:

(1) lo o Vt o fr 2 r -
00

a for ll t<xro

(is) logD< ro -0o V(x ) < 0
1 0 r -

0 0

(i1) it the sequential life test is continued beyonthe ro'th failure;

__ It terminates with the acceptance of Ni: e a .

clearly

(29.9)POO) A + i(ro)
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£ Sow it 1s difficult to determine el (r) 0 t give a sIqmpe upper bound ftrst.

Assuming that fil is true, lot L(ro ) be the probability that conition (i),

holds, i.e.,

(20.10) P(rol -r (logD<r o log - (I- )(xr ):sole •
1 1 0 0

Then 1 (r o ) >f(ro) and hence

(2 11) .9U) + (ro)

We nov show how to compute Ior) and (r) . To compute Fo(ro) , we

recsll that It r is preassigned, then, under the bypothesis that go: G8o

is true, 2V(X )/9 in distributed as %Xof2ro) . Consequently,

r,, k 0oe 0

0

(202)Po~o aPr 2(ro log k log A) 237 lo k

where k G/019
In a similar vay one can compute L(ro) I If ro is ptesaisigmed, then,

under the hypothesis that a: G 91 is true, 2V(xr )/el Is distributed as

2W). Consequently

(20.13) r0- og k 2ro) -log

k
Thus we can sumrize our results as folows:

(20.11) a(ro)<-'+ Pr 2o lo,.k - log A) <.(2r 0

anm
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V (3s~~) P~r)cP ~ ro k hiog Ik 2  2k(r. log k-o

It Is our ftIUg that the uper bounds for a(r o) and A(ro) that WOUvne

tmiad ewe *UbetAMflI&lly above the true values of a() an (ro) ."

It seem epppriate at this point to give a numerical exame. Com*1e30 0the m* p robf o ,f ts No: 9 w% 9,aaint 1.: 0 a.9 vt od m

k = 3 . -O can reaily verify fro T 5, that a a=-sqegnt*,. life

test requira. r. 10. eypotheele that 9- i a I accepted. It
0 

.

|41Jn : o) .95()2 - 5.42 o9, <andw rejectd os . 'ow l s s)

r. w. 10 15 20- j,(m 30z . ,. .

if rn 10, tbe

Ca(1) 0 + Pr [10lUS3 -1019 <18(20)<l10log 33

a r(8.05 < 7(a) <lo.99J I. .05 + .01, ! 09

mad

04l) 0 +Pr C3 a3 :~S 0) <3 (lWlJAMiUsg9))

if ro 15, %beu

045)0 P' LV 1 3305 4 9 (30 C 6 ]a JL



Sand

1045) IS P t45 log 3 <'l(30) < 3(-5 log 3.+ log 1.91)

AP+ Pr (9I"I < 1600) < 58.26} .0 + .015. .065
I

It. ro 20 ten
0

a(20) Ca Pr(20 log~ 3 log 19<?(.O) < 20 106 3)

2

0 + Pa(l9Ok4 < %?(40) < 21.98) N .06

and

IS(o) 0P+ Pa {60 lo s3X< ;(4o) <3(20 log 34 log 19)a

If r 0 30, tn0

a(30) CSOa* Pr(30 log 3 log 19 <%2 (60) <r 30 log 3

o. 1r(30.o <2.(6o) < 32.96',4 .051

0 0(0)< + { (90 log 3 < 14'60) < 33D 0 3 + IoM 19))

i. + P1, 88 <P(60) < lo.7O)-S .ol. j
Thus vs see in this ,.fauple that if we trnmcate the iequentUae life test

at r 0 30, i.e., at, time 10 , the r rquired for the am-sequental lAt
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test, then (r) Is approximtely equal to -. amd O~r) Is approximately

equal to T. fables are being calculated for other values of a,1P A aod / 1

and the indications awe that *iat ve observed in the example holds aoe generally.

That -lo truncation of the sequential life test at three time the number of

failures required in the non-sequential life test will have virtually no effect

on either a or P. -

I
3. Truncation on the total. observed life. I

We have up to this point truncated the sequential life test by setting a I

definite liLt on ro , the number of item failed. We nov wish to truncate

the sequential life test by placing a definite limit Vo  oan the total observed

life. We can achieve this by truncating the sequential life test at V(t) V0 ,

g.e., by giving a oev rule for the acceptance or rejection of %: 8 = o when(0
V(t) - Vo if the sequential life test did not lead to a decision for V(t) <T o"

A simple and reasonable truncation rule at total life Vo  is the folloving:

If the sequential probability ratio test given by (31) does not lead to a final

decision for V(t) < , accept Ho: 9 a 0  at total life V°  if

(20.16) logB<r -log Vs< 0
0 0

and reject 1[ 0 (accept k:eae 1 ) if

(90.17). lo 1 < lo18o.171O<rlogrl(i' ")Vo <lsA

Truncating the sequential life test at total life Vo Will chaMs the Tpe I

and Type I errors. They wifl no longer be a and 1, the Type I ad 5ype II
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errWe respectively$ in the untruncated sequential caSe. e effect of the

trncation an a and 15 depends, of course, on Vo .

%he larger one wkes Vo  , the smaller are the truncation effects on a

and P5. lot us'denote the resulting Tpe I and Type l erm eas (Vo) and

P(Vo) , respectively, if the sequential life test is truncated at total life

v(t) a vo at the latest. Ve nov derive upper bounds for a(vo ) and P(Vo)

To obtin an upper bound for O(Vo) we have to consider the ca.ea in

which the truncated sequential life test leads to the rejection of 9 - so

vhle the non-truncated sequential life test leads to the acceptance of so

Supposing that ° holds (i.e., that e ae 0 ) , let 90 (Vo) be the pro-

bability that the samle random function associated with a life test is such that

the truncated life test leads to rejection of I , while the non-truncated.

life test leads to the acceptance of H°  . Clearly we get

(20.18) c(V) KO a + FO(Vo)

The reason for the inequality rather than the equality is that there my be

sample random functions associated with life tests for which the truncated

life test leAds to acceptance of so , while the non-truncated life test leads

to the rejection of H0  . Assuming that So Is truep pO(VO) is the

probability that the random function associated with a life test is such that

the following three conditions hold simultaneously:

(1) log D< rlog - ( V(t) <log A , for Y(t) < v

V1, it termiates ith the acceptance of e
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I Assiag that 10 is trnm, let FO(To) be the probability that canditon

() h , i.e.,

(20.20) Fov) P O<r o 1 n

Since the probability that (ii) is fulfilled cannot be mailer than the pro-

bability that conditions (L) , (Li) , and (ill) are fulfilled aiuultaneously,

we have

(20.21) (V) _

andtherefore,

(2G.22) a(vo) 5 a + o( 0

Thus a + j (V) is an upper bound for r(vO) • We show further on tLt

o(Vo) can be computed easily.

To obtain an upper bound for P(Vo) , let us asum that a,: 6uG0 , is

true and let fl(Vo) then be the probability that the truncated life test leads

to the acceptance of A0 , vhile the non-truncated life test leads to the

rejection or o . Zn other r, p.(o) is the probability (assuiaS that

9 a e0 is true) that the sample random function associated with a life test is

such that the following three conditions hold stwaltaneously:

10) logZ< r logj 2  (j. V(t) <log A for v(t) < V
1 1 0

(20.23)1

1 1 0
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S(2G.23)

(iII) If the sequential life test is continued beyond total life V0

it terminates vith the acceptance of H1: e 9 1

(20.2) Clearly P O ) :5i + t(Vo)

Since it is difficult to determine 1 (Vo) ve give a simple upper bound first.I0
Assing that B is true, let k(Vo) be the probability that condition (ii)

holds, i.e.,

(2G.25) ~(V) - (logs<rlo r-O (r -- V 0 aj9
0

Then

(20.26) ii(Vo > rlz(Vo

and hence

(2G.27) 13(V) < 1 + j 1 (Vo)

We nov show how to compute fo(Vo, and fl(Vo) . To compute F,(¥o)

we recall that if V0 is preassigned, then under the hypothesis that

H : Q = 9 is true, we are observing a Poisson process vith rate paraaeter
0 0

1/90 for a length of time V0  . Consequently,

(k-1) + log v

(20.28) looo). < r <
log kog k ao n 0 0
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wb-r k. 0 " a. N-1) 'Wo log k and no (k-1) o+ log A k.
1l 00

In a similar v oe can compute . If Vo  is preassigned, then wer

the hypothesis that E1: & . 81 is tru , ve are observing a Poisson process with

rate parameter A = 1/0 1 for a length of time . Consequently,

S(k-1) VO + log D (k-1) V 0 <r

FO - V o
(20-29~ ) Pr < r< 0 i: prW

Ll £ log k log k m r n1  81
< rvo<

where = k-1) + log ok and (k-1) logi o k

Thus we can sumarize our results as follows:

(2030) < +m p(r;jo)
m <o r< o

0 0

and

(2031) A(V o) < A + p(r; -)

where M. n m 1, a, are defined above. We are quite sure that the upper

bounds for a(Vo) and P(Vo) that we have obtained are substantially above. the

true values of a(Vo) and O(Vo)

We now give a numerical example to illustrate vhat we have Just discussed.

Consider the problem of testing NO: 0 - o  against El: 9 a 1  , Wth a P..05

and k a / 1  .3 . Lot us see what happens for truncation times V0  such
00

that Vo/e 3 ,6,9, 12 andl .

If VO/ o 3 , then



2.65

a(v ):, + p(ri 3) , vher
00

%°  (k-1) log k. 6/.1 .1 .

and

o  k-1) O + lo o k .. - 8.•13

Bence

a(V0) < .05 + p(r; 3) -.05 .08..13

similarly

o(Vo) < 0 + p(r; 9) , vhere

.1 k-1) 0o + log log ki [6 -2 .1o
~go

-3.06/1.10. 2.78

and

0

Bence

Alv o) < .o5 + p(r; 9) .16

ST-2 "6, then
0 I v c( <_ a + p(r; 6) -05+ .039 -'0089

00)< p(r; 18) .0 + .023- .O73
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,Vo

If e 2 then

0

a(vo ) <  +  p(r;9) . .060

and

A(Vo )< + p(r; 27) -. 06

0

a(v)<a + p(r;12) .. 05

and

p(v)< + . p(r; 36) o .%

V0

0

a( y ) < a + p(rs 15) *.052

and

AN) 0 CP* p(r;45) a .052

hus we See in thi examPle that if ve truncate the sequential life test

at V . 15 90 th n a(vo ) a A(vo) a affuoxciate3y equal to 0 wA

U 0 0 0
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Srespeetively. For the non-sequential lie test, trunoation occsu at
V -5.AM o . Thus In this example truncating the soqumrtial, life test at

three time the V required for the non-sequential test has virtually no

effect on either at or /8. Tables are being calculated for other values of

of,#. and G and there are indications that what we observed in the

eaaple holds more generally.

Truncation on the number of items failed and total life.

Nov It may happen that we would like to truncate the ife test both with

respect to the number of failures r° and total life V 0  We first note that

our truncated a equential life teats considered up to now are of this kind.

Indeed, suppose that one truncates at r - ro o Then we assert that this Induces

a truncation -on total lifes

ro log 0~

0o

Thus if the random function representing the life test is such that one attals

total lWe Vo (reaches BC) with fewer than ro failures, then one knows that if

one continues the test until re  failures ocour then the saqple-random function

must cross either BD or DC and in either case we would accept He " ene if

one attains total life V. = f re with fewer than re failures, one con stop

with acceptance of Ho * S:imlarly, if one trunOates at total life V a Vo , then

we assert that this Induces a truncation on the umber of failures

( I go% - oC - /"o r" (See Fiur t(o n6).]
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Thm. I the remim funolon re e nsmag th. lWfe test Is wswh that the r o'th fallw'

occurs before total life Vo (i.e., reaches 00 ) , then one knows thatf one

coutimts the test until total life Vo , then the sample rando function must

cross either 0 or Ci end in either case we would reject I . Bano if

the ro'th failure occurs before total life V one can stop vith the rejection
0 0

of R

008uppose nov that one preassigns both the number of failures r ° ea total

life V and truncates the sequential life test at V a V° and r w ro. • ten

from the foregoing one can Impose the following equivalenttruncations:

(1) Vor r truncateat wmin i:. 0 1 o o1
ro lo g T mo in a

(2) For V truncate at V* min 1 l1 -an 0v rol.

Clearly re  and V* will meet the condition

(3) r* V( - )/logj2 . v*/S

(See Lgur (7).)

The truncation rule Is as follows: if the sequential probability ratio test

given b7 (31) does not lead to a decision for V(t) < V* and r < r e (i.e., it

neither AD hor 10 are Intersected or crossed) , then if the Saple random

function associated with the life test hits the boudary V - V* (reaches W0)

before reaching ra w* (CC) accept No . I, bovever, the saPe madam

function hits the boundary r a r* (Ce) boren reaching v - V (w0) ,

( reject s o (accpt ,)•
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Truncating the sequential life test at failure number and at total

life V . i.e., accepting No , i' the saotle rsnm function associated with

the life test mets AS or C before crossing i or meting 00 . and

rejecting I if the saxple random function crosses 10 or mete CO before

meting AS or N0, vi1l change the ype I and tp 1I errs. Let O( e , V*)

and A(re ,*) be the Type I and TVpe 1 errors, respectivelyp, associated

vith the truncated test. It is clear from what we have said above that O.C.

curves associated with truncating at r r* , V - , rhere V* = r coincide

with those based on truncation at r = r or V n V5 . Consequently C(r 1 ,V5 )

Sa(r) and A(r*, vy) - (v*) . Upper bounds given previously for (r)

and i(V*) are automtically upper bounds for CI(r*, V*) and 0(r*,V).

I]
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I

ProbabilitZ of termination of the legunutial Ufe test

at preassigned values of ro and

It is Interesting to ask the question: what in the probability that the

sequential life test viii terminate vith a number of failures less than or

equal to eome preassigned number, r , or after total life less than or equal

to som preassigned value V°  ? Using considerations analogous to those In

Vald's book on Sequential Analysis, pp. 58-60, ve can state the following

results vhich give lover bounds for the probability that the sequential procedure

vil1 terminate with a number of failures r < r for the tvo values 0 a 0

and GaG 1  .

Consider the question of evaluating the probability that the sequential

life test terminates vith a number of failures < r o  • Then using consider-

ations like those in Vald, we can assert that

00 1 1so~ ~ e lr o )(23.1) 2r(r o I e -lg)

since 2 T(x 0/ is distributed as (2o) under Ns
0o 

0

And esmilely

(2K.2) Pr(r < r 0 0G1 ) Pr 1 ro log 2~(L-i* V(xr 2)log A 0 0
0 e 1 0 0

uPr(t (2 0 ) :S2k(r. log k-logA )
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( asnc 2 (xo) / Ol is distributed as Ok (2r ) under 0
In a similar way we on evaluate the probability that the sequential life

test terminates at total life V(t) < Vo  . We can give the following lower

bounds for the probability that the sequential procedure will terminate at

total life V(t) <v o  for the twovalues 6 ao and oe I

9
(2.3) Pr(V(t)<V o 18=0 0 )>Pr(r l o :2 - (I - 1 ) V<log3 I 8. o)

81 91 go0 -

-= 0(r; where a0 - [k-1) % +log 1 l/ og k
- -0

Since under the hypothesis that 0: 0 a e o  is true, we are observing a

Poisson process vith rate parameter X a 1/o for a length of time V

Also

(2EA') Pr(V(t)c Vo , a - 91) 2 Prjr log *2-o V 1 =
91 01 s

- iZ p(r; L),here a, [(k-1) !2 +log A /log k
al i aI L 0  J

since under the hypothesis that a,: 0 1 is true, we are observing a

Poisson process with rate parmter VOI . L/l for a length of time V°

We now give a numerical exaqle to illustrate what we have Just dlscussed.

Consider the problem of testing go: a a a against HI: 0 a 01 with P m

.05 ,a k. / .3 . Lt us comute lover bounds for Pr(r < r e )
0 0

,a Pr(r< r0 10. 1 ) far ro -  0 ,  5 20, 2 , 30 and overbounds
for Pr((t) < V I aer.01) for V0/90 a 3 6 s 9 12 and 15 • We first

compte Pr( r %r0 l 1) 1 a 1 ,2 for this exua;1e:
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Pr(, < 10 I -) < 0,(", (20) > 10.99 + 2.94)

. ( )2 _393) - .83

and

Pr(r < 10 0 . ) > Pr(OZ (20) < 3(10 99- 2.9) )

P.(. (20) < 2.15). .

If r 0 15 , then0

Pr(r < 15,1 90 ) P> r(e (30) > 191A3 ) -9

and

fr(r < 1 1 a - >ei Pr( (30) < '0,65 ) .90

If ro 0, 20 , then

.ir(r < 20 I 0- o a pr(%2 (40) >_ige )2 . .97

Pr(r < 20 I 1. e) _.( (40) S s 7.. ) = .96

if r0 - 25 v then

Pr(r <25I 0 00 )>f()L(0) 30.12).99

Pr(r < 2!5 I 0 . *) > r('t! (50)S 73.62 ) g.98

I -,( <m . _e, (o <+.,).e
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I, (-a - o
If ro 30, then

P(. <3 I .e,) > r( " (6o0)3.91 ) - .995

?r(r < 30 1 * e1) Pr ! (60) < 9.1 ) - .99e

Similarl.y we compute Pr(V(t) <Vo 0 w 11 ,I. 1;, for this eGampLe.

Vo
If 2 m3 ,then

0

Pr(V(t)<Vo I 0  A p(r3 3) vbere-- 0 -- --0

- 0

Hence

Pr(v(t) <,v, 0 0
) > Plr 3) .42

and

Prvt<v o je .e 1 )> p(r; 9), were

Benre 1prlvt) I aol -o2. plr; 91- .5 •

Vo
If -. , then

0



and

Pr(V(t) IV 0 e m 1 )> 932)u .9

If 92, then
0

10

Pr(v(t) :sv 0 0 0 me> p(r; 92) .926

and

Ift .12 ,then

jPr(v(t) : % 0  - Go me ) p(r;-12) .979

fr(Y(t)5v 0 .m91 ) p(r; 3) s9%6c0
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(- i'w. .B for the probabilty that a sequential life test vilL te nate yit
a Pres"sioed ro and V are being coqmuted for other values of a SD and

009o

lvl

CI
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( ~r andlower bounds tor L(e) ja 3*(r)

The foroula. for L(S) and Z,(r) . given by (37) and (38), respeotively,

&M larroziutiou to the actual L(O) and actual Z*r) arising fras the use

of the sequential rule specified by the Inequalities (31). The question arises

as to how good these approximations are. A modification of the results of Wald an

bounds for the 0.C. and ASN curves in the blnomial case an of results of

Hez'bach on the discrete Pbisson yields the following bounds on the actual L(e)

and Z()

(i)L(S) log. [ + 1-L(S)l log A ,r
log k-0(l/01 */O) 1Ir)[- 1(*/00)

< Ego) log B+1 E.[1zA+Lgk

log k - 0(1/0e1 a 1/e0)

where the upper inequality signs bold for 0 < a and the lover inequality &igsm

hold for 0*>s

Weunpleasanit feature of the bounds gi~ven In (11) Is that they Involve

L(O) , ich. Is unknown. Nowever, this astters little in actual pkactice beoams

the limits on LM@ gOven by (i) ame quite close togfther for the ruog of

vaue of k and (0,15) covered in Ta~ble 10. Ths, for e~mplo. for

(;we Wet that .95 <L(e0) -93 'A -0 L.1 ,- The Wer nd lwer
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bomiastvl for 2,r. fomr (1)are cloe toether for 0 , 0 a*

IY arspat or aOl. 2hus for the case Ia3 ad

a-ip= .05js the ifrerenc between the per aM lover bouMs is <.06

for * a 0I andisbout2.5 for 0e

%a left side ot (ii) Is the aLte fozla (38) for 2,(r) me"

that thu L(e) In (11) refers to the exact value an the L(e) in (38) is

given byr the approimation (3T). In view of the preceding pazeU'pb the MIMuS

of B S(r) given In Table 10 are very close to the correct values, lbIle the

values of * (r) are essentially lover bouns for the correct value. We

cannot say more unless ve So througb more extensive calculations of the sort

to be described In Appenaix 23. I
I

aapadiz 23
a

Some exact calculations of L(e) and 3,(r)

Wald pointed out that In order to have a test of exactly strength (c,E)

aceptnc of no  lves no P,=eu over the boundary. Nweer cepac

0

or E does, In pseral, entail a positive exess -over the boundro ad
t.h e Aan Ba int l souti be rpa It abo a ld , wee o

AIa)e test ae on using A ad B Is sitable fr all

ofactial d o es gneal, ete ail of tpositieeulte o e A unda 21

isall en syrinith abou An isc tat it s al li , be<e AS - a).

SimA us sn an 5 Am (W14 mall/.1 istay) IL ssanr a sdton.A#A 1
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( provides essentially the ease protection against errors of the first and

second kind as does the test based on using A* and B' However, the

use of A rather than A' In (31) will entail a small increase in Se(r) ,

particularly for 0 < a

As a practical matter, one would usually be content with a test based

on (31) which uses A and B As a matter of fact, this is what is done

all the tine by people faced with a practical decision problem. For most

sequential problems, the problem of finding the A and B* which will

give exactly strength (at 3 ) has not been solved. One has to rely,

in such caseo, on the results of Wald which indicate that the errors in-

volved in using A, B, and approximate formulae for L(Q) and E,(r)

are "reasonably" small.

In the problem at hand we know, in view of the continuous availa-

bility of information, that B* a B * */(l - C) a Furthermore, formulae

are available for computing A and for computing O.C. and ASN curves

exactly. The formulas for accomplishing these tasks are available in

papers by Burman and by Dvoretrky, Kiefer, and Wolfowits. While the

computational labor involved in any special case is exceedingly heavys

the results of such computations do throw some light on how exact 0.0. and

ASN curves compare with those computed by using approximations.

Formulae (4.17) and (4.23) in the Dvoretky, Kiefer and Volfowit

paper (1similar formulae are given In Durman's paper, p. 102) were used

to compute

(i) the exact O.C. and 3,(r) curves for the sequential rule (31)

with B a A/(l -C) and A a ( - )/ . Thi was done for the casm

ka 0/0, 3 and # *05t and
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MOi A* (where A 019 A* S A) such that the dcision rsU

4/( C -) < r/Oz) - 1 - 1/9) V t)3 < A*

haa an OoC. curve for which L( o ) 1 C - and L(O 1 ) eoatly, and

then to compute Z,(r) for the (BoA) rule. This was done for th

Oases ct s s .05 ad k u a 3/2,2, and 3, and also for a. .pn .01

and k*3

The result of Wi) ws

L(9o) u .968, L(s) - .529, L(Q.) .051 ,

E. (r) -3.03, Bs(r) .8.10, S. (r) 7.00
o 1

Computation (ii) gave

k A Z, o(r) B(r) Xsr)

3 13.25 2.94 7.22 6.21

.0.5 2 15.1 8.64 18.0 13.8

3/2 16.6 27.9 52.8 36.8

.01 3 68.9 5.00 17.5 10.5

Bearing in mind that the computations were carried through only In

a small number of oases, one can make three observations

(a) For the case k = 3 and aCe A a.05t, the use of B 1/19

and A a 19 results in getting a .032 mid e031 as compared

with • .05 when one uses B' B 1/19 and A* a 13.25. Also,

e i(r) is increased by .09, .88, and .79 at 0 - 0e, 0 , 1 respectively.I0
4.

! *
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(b) Of o"e interest is the fact that the exact values of %(r)

for the (3,A -) rule practically coincide with the approximate values of

3,(r) computed for the (2,&) rule by formulae (38) and (39) and given

in Table 10.

(a) Zn the range of values of k a 0o/O and of c and P covered

by Table 10, a good guess at the value of A* is the value A** lying

midway between A and A/k , the upper and lower limits on A . This

means that A* (k~l) A/2k . On the-basis of our limited calculations

we conjecture that in the range of values covered in Table 1, a sequential

decision rule based on (31) with A replaced by A** will have almost

exactly strength (d, ) . The values of E(r) associated with a

(B,A*') rule will be given to a close approximation by (38)o

Appendx 2E._

An approximate formula for £ 0 (t) in the nonreplacement case

A useful approximation to Zo(t) in the nonreilacement case is given

by 3 0 (t)'-Q log (n/Ln - E(r)3) . This approximation Is obtained by

replacing E.(Zk n ) in (42) by its approximation G log (n/Ln - k)o).

Thus (42) becomes (43)

30(t) ' Be i[log ( - 0) log(n £ )

This approximation has been tested numerically by calculations on

truncated nonreplacement decision procedures, where the exact values of

IL 3*(t) can be computed and compared with the suggested approximation. The

agreement is close. f
I
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Values of X,.., 20/2

.01 ..05 .10 .25 .0

1 .010 .02 .lo6 .288 .693
2 .074 .178 .266 .481 .839
3 .145 ,272 .367 .576 .891
4 .206 .342 .436 .634 o918
5 .256 .394 486 .674 .934
6 .298 43 .525 .703 4945

* 7 .333 .469 556 .726 .953
8 .363 .498 .582 .744 .959

9 .390 .522 604 .,760 .963
10. .413 ,543 .622 .773 .9670

15 .498 .616 .687 .816 .978
j 20 .554 .663 °726. .842 .983

25 0594 .695 .754 .859 987
30 .625 .720 .774 .872 °989

40 .669 ,735 .803 .889 1992
50 .701 .779 .824 .901 .993
75 .751 ,.818 .855 .920 .996
100 o782 .841 .874 .931 -997

iit*1 This table is used in the following way:

Accept .= °  if ,n > 0o -.(2r)/2r and reject otherwise.

Suppose, for example, that we want to discontinue a life test after

r a 3 failures have occurred and that we want the life test to be such that

a lot having mean life 0 a 1000 hours is accepted with probability .90.

Using formula (7) and table (1) the region of acceptance is given by

In > (1co0)(.67) - 367.
( In words, one places n Ite*s on life test and stops testing after

3 items have failed. One then computes 0 an estimate of the meane ,.,
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life after 3 failures, using formula 2 in the non-roplacement case mud

formula 3 in the replacemont case, One accepts the lot if 6 > 367 and

rejects otherwise. Suppoiez, for example, that we place n a 10 items

on test. do not replace items as they fail, and that the first 3 failure

times are 50, 125, 250 In this case #310 = 5125Q+(2) 2 7

Since 725 > 367, we accept the lot.

I

I1

C1
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TAM Z(a)

Values of 0 accepted with probability p, when 0 n 1 is accepted with

probability .99. Rule of action is to accept if .tn > X299(2r)/2r

.... 925 90 -. 7. 50 , .25, .10 .05 .01

1 -- 1.0 .194 .095 .035 .014 .00? .064 .003 .002

2 1.0 .I8 ,279 154 .088 11055 .038 .031 .022
3 1.0 .533 .396 .252 .163 .111 .082 .069 .052
4 1.0 .602 .472 .325 .224 .161 ,123 .106 .082
5 1.0 ,649 .526 .380 .274. .2o4 .160 .140 .110
6 1.0 o683 o566 .423 .315 .241 .193 .170 .136
7 1.0 .709 .598 .458 .349 .272 ,221 .197 .160
8 1.0 .730 .624 .488 .379 .300 .247 .221 .182

9 1.0 .747 .646 .513 .040, .325 270 .243 .202
0

10 1.0 .761 o664 0535 .427 .347 .291 .263 .220
15 1.0 .809 .726 .611 .510 .430 .371 .342 .294

20 1.0 .836 .763 .658 .563 .486 .428 .398 .348
25 1.0 .855 .788 .692, .602 .527 .470 440 390
30 1.0 .868 .807 .717 .632 .560 .504 .474 .o424

40 1.0 .887 .833 .753 ,675 .608 .554 .526 .4177

50 1.0 o899 ,851 .777 .705 .642 .591 ,563 .516
75 1 .918 .878 .317 .754 .699 .653 .627 0.583

100 1o0 .930 .895 .840 .785 .734 .692 .669 .627

Note: Tables 2(a) through 2(e) g.Ive O.0. curves associated with test pro-

cedures of the form: Accept if t > .(2r)/2r Time units arer,n ,1
chosen in such a way that the probability of accepting 0 a 1 is

1 -s'o

Examples of use of table 2a.

Iron table (1) we know that the acceptance rule 1,n > i000 (.256)*256

will lead to the acceptance of a lot with mean life 0 = 1000, with

probability .99. From table 2(a) we can say that a lot with mean life

526 will be accep';ed with probability .90, that a lot with mean life

274 will be accep :ed with probability .50, and a lot with mean life

160 will be aocepted with probability .10.
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TAJ2(b)

Values of 0 accepted with probability ps when 0 - 1 is accepted with

probability .95. Rule of action is to accept if lrn > X,93(2r)/2r "

IrI 9 .95 .90 .75- .0 .25 .10 .05 001

1 5.150 1.0 .488 .179 .074 .037 .022 .017 .011

2 2.394 1.0 .668 .370 212 .132 .091 .075- .054

3 1.875 1.0 .742 .473 .3o6 .209 .154 .130 .097

4 1.66o l.o .783 .539 .372 .267 .205- .176 .136

5 1.540 1.0 .81o .585 .422 .314 .246 .215 .170

6 1,463 i.o .829 .619 .461 .352 .282 .249 .199

7 7 1.410 1.0 .844 .646 .493 .384 .312 .277 .225

8 1.370 10o .855 .668 .519 .411 .338 .303 .249

9 1.339 1o0 .864 .687 .542 .435 .361 .325 .270

10 1,314 1.0 .872 .702 .561 .455---. .382 .345 .289

15 1,237 1.0 .898 755 .63o .531 .459 .422 .363

20 1196 1,0 .912 .788 .674 .581 .512 .475 .416

25 1.170 10 .922 .810 .705 .617 .550 .515 .456

30 1.152 1.0 .930 .4;26 .728 .645 .581 ..546 .489

40 1,128 1.o .940 .849 .761 .685 .625 593 .538

50 1.112 1.0 .946 .86,5 .785 714 .658 .627 .574

75 1.089 1.0 .956 .889 .822 .761 .711 .683 .635

100 1.076 1..o .962 .904 .844 .790 .745 .719 o673

E2Bi.E. If the life test is discontinued after r = 1 failure occurs, and

if a lot with man life 9 a 1 is accepted with probability .95, then a lot

with mean life a 1074 is accepted with probability o50. Rule of action

is: Accept if 'ln > .052.

If the life test is discontinued after r a 5 failures occur, and if

a lot with sean life 0 1 is accepted with probability .95, then a lot

with mean life 9 a .422 is accepted with probability .50. Rule of action

is: Accept if a > .394.
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Values of oacc6pt.d.ith... 2.2

Values of 0 accepted with probability p, when 0 = 1 is accepted with

probability .90. Rule of action is to accept if > r r.

-99 .95 ,90 .75 .50 .25 .10 .05 .01

1 10.550 2.049 1.0 367 o152 .o76 046 .035 .023

2. 3,582 1.496 1.0 553 .317 .198 .137 .112 .080

3 2.528 1o348 1.0 638 .412 .281 .207 .175 .131

4 2.120 1.277 1.0 688 .475 .342 ,261 225 .174

5 1.902 1.235 1.0 722 .521 .388 .304 ,266 .210

6 1,765 I.206 1.0 .747 .556 ,425 .340 ,300 .240
7 1.672 1:186 1.0 .766 .584 .455 370 z329 267

8 1.6o2 1 7 .0 8 .607 41 396 ,354 201

1,10 48

#14 9 1.549 1-157 1.O .627 .503 ,48 376 312
10 1.506 1.147 1.0 .805 .643 "522 ,.438 ,396 o331

15 1-377 1..114 1.0 .842 °702 .592 .512 471 .405

20 1.311 Io96 1.0 *863 .739 .637 .,561 .521 .456

25 1.269 1.084 1.0 .878 .764 .669 ,597 .558 .495

30 1.239 1o76 3.o .. 888 .783 .694 -.624 ,587 (526

40 1.201 !.O64 1.0 .903 .31o 1729 .666 .631 .572

50 1.175 1,,05 1.0 .,914 .829 .755 .695 .662 .6o6

75 1.139 1.046 1.0 ,930 .859 .795 .743 714 .664

l00 1.118 1-039 1.0 939 .877 .820 .774 _747 .701

Example: If the life test is diicontinued after r = 10 failures occur, and

if a lot with mean life 0 = 1 is accepted with probab.lity ,90, then--
*

a lot with mean life = .643 is accepted with probability .50, and

a lot with mean life = .396 is accepted with ,#robability .05.I

Rule of action is: Accept if O0, 622,

Ilo'
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jf~ TANA 2(d)

Wslues of 0 accepted with probabilit, p, ften 0 1 Is accepted vith

probability .75. Rule of action is to accept if > 2 (r)/2r.ran .75

-.9 .95 .90 *75 -50 .25 .10 .05 .01

1 28.750 5.:82 2.725 1.0 .415 .207 .125 .09o 4062
2 6.4.75 2.705 1.807 1.0 .573 .357 .217 .203 .145

3 3.902 2.113 1.58 1.o e646 .4.1 .325 .274 .2o6

4 3.081 1.855 1.153 .1.0 .690 .496 .380 .327 .22

5 2.634 1.710 1.385 1.0 .721 .537 .421 .3o8 .290

b 2.30 1.b15' 1.339 1.0 .744 .568 .4.55 .401 .322

7 2.181 1.547 1.305 1.0 .762 .590 .483 .29 .349

8 2.050 1.496 1.279 1.0 .777 .615 .506 .453 .372

9 1.99 1.4% 1.29 1.0 .789 .633 .5'26 .474 .393

10 1.871 1..424 1.242 1.0 .799 .b8 .4 .492 .4.1

15 1.637 1.324 1.188 1.0 .834 .703 .608 .559 .481

20 1.519 1.270 1.159 1.0 .856 .738 .650 .bO .328
. 25 1.446 1.235 1.139 1.0 .870 .762 .680 .636 .56

30 1.395 1.211 1.126 1.0 .881 .781 .703 .661 .592

40 1.329 1.178 1.107 1.0 .897 .807 .737 .698 .b33

50 1.286 1.157 1.094. 1.0 .907 .826 .761 .725 .66

75 1.225 1.125 1.076 1.0 .924 .8"5 .800 .768 .714

100 1.190 1.1o6 1.065 1.0 .934 .874 .824 .7 .76

WmLe: If the life test is discontinued after r - 10 failures occur, and

if a lot with mean life 9 - 1 is accepted with probability .75, then

a lot vith mean life 9* - 1.4.9# is accepted with probability .95 and a

lot with mean lif*e - .%4 is accepted with probability .10.

Rule of actio is: Accept If a10,n> -T13.

Io
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Values of 9 accepted with probability p. when 9 a 1 is accepted with probability

A
t50. Rule of action is to accept if 9r.n > % 5D(2r)/2r.

.... . r~ .. . .. . .0 i

.99 .95 .90 .75 v 0 e25 .10 °05 .01

1 69.3oo 13.456 6.569 2.h1o 1.o .500 301 .231 o150

2 110303 h.722 3.155 1.7h6 1.0 .623 oh32 .35h .253

3 6.133 3.271 2oA26 1-5h8 1.0 .682 .502 4l25 318

I h,62 2,687 2.10h 1.448 1.0 .719 ,550 .474 .366

5 3.652 2.371 1.920 1.387 1.0 74 o58h o510 *403

6 3.176 2.170 1.799 1,34h 1.0 ,764k .611 .539 .33
7 2,862 2.030 1.712 1.312 1,0 .779 .633 .563 .458

8 2.639 1.926 1,6147 1.288 i0 .792 .652 .583 4179

9 2.1472 1.846 1.596 1.268 i0 .802 .667 A60 498
10 2.311 1-782 1.554 1.251 1.0 .812 .681 .616 .515

• 15 1.962 1.586 1.42h 1.198 1,0 8h3 .729 ,670 .576

20 1.775 1.148h 1.35h 1.169 1o0 ,862 .759 .705 .618

25 1.661 Io.19  1.309 1.14 1.0 .876 .781 731 .648

J 30 1.583 1.37, 1.277 1.135 1..o .886 798 750 o671

ho 1.182 1o11h 1.2314 1.115 1.0 .900 .821 4719 706

50 1.418 1.275 10206 1.102 1.0 .910 ,838 .799 .731

75 1.325 1,217 1.16h 1.082 1.0 .926 .865 .832 .773
100 1.274 1.185 1.11,0 1.o71 1.0 .935 .882 852 .799

Exuple: If the life tes' is discontinued after r 1 10 failures occur, and if

a lot with mean life g= 1 in accepted with probability 50,, then a

lot with mean kfe *- 1782 is accepted with probability o95 and a

lot with mean life IF= .9681 is accepted with probability o10.
A

Rule of action i:ss Accept if 10n > '967

ICJ
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(-7 TAME 3(a)

Values of E(X )/G , where X is the rth Smallest Value in a

Random Sample of Size n Drawn from a Distribution whose Probability
e -X/g

Density Function is x , , > 0

In the table r = 1(1)n and n-- 1(1)20(5)30(10)100

1 .3 14 5 6

1 1o0000 0.5000 00333 0.2500 0.2000 o.1667
2 1 5000 0.8333 0.5833 o45o 0.3667
3 1.8333 1.0833 0.7833 0.6167
4 2,0833 1,2833 0.950O
5 2.2833 1o50O

6 2.45o

7 8 10 1 12

1 0.1429 0.125C 0.1111 .1000 0.0909 0,0833

2 0.3095 0.2679 0.2361 0.2111 0OA909 0o1742
3 0.5095 0.311 0.3790 0.3361 0.3020 0.2742

14 0.7595 0.6345 o- 51, 6 0.4790 0.270 0,853
5 1.0929 0.88hC1 o.756 0.6),56 0.5699 0.510h

6 1.5929 1.2175 0.9956 0.8456 0.7365 0.6532
7 2.5929 1.7175 1.3290 110956 0.936; 0.8199
8 2.7175 1.82g0 1.429 o1865 1.o0199
9 2.8290 1.9290 I.5199 1.2699

10 2.9290 2.0199 1,6032

11 3.0199 2.1032
12 3.1032

_ _ _---_.... .. .._ _ _ _ _ i_ _ _ _ _,,

[-
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TABL 39 (Con't)

rim 13 lii 1s 1617I

1 0.0769 0.0714 0.0667 O.0625 0.05M6 0,0556

2 0.1603 0.1W0o 0.1381 0.1292 0.13 0,.n4

3 0.2512 0.2317 0.21.0 0.2006 0.1880 0.1769

'4 0.3512 0.3226 0.2984 0.2775 0.2594 0.2435

5 0.4623 0o4226 0.3893 0.3609 0.3363 0.3150

6 0.58M3 0.5337 0.4893 6.4518 0.4197 0.3919

7 0.7301 0.65E7 0.6004 0.5516 0.5106 0.4752

8 0.8968 0.8016 0.7254 0.6629 0.6106 o.5661

9 1.oQ68 0.9682 0.8682 0.7879 0.721.7 006661

10 1.3468 1.1682 1.0349 0.9307 0.8467 077"3

1 1.6801 14182 1.2349 1.0974 0o.,896 0.9023

12 2.1601 L7516 1.4S49 1.2974 1.1562 1.C451

13 3.1601 2.2516 1.8182 1.5474 1.3562 L2118

14 3.2516 2,3182 1.8807 1.6062 1o4118

15 3o3182 2.3807 1.9396 106618

16 2.3807 2.4396 Lo9951

17 3.4396 2.4i951

is 3.4951

r n c19

1 0.0526 7 0.4445 1. 12644

2 0.1082 a 0.5279 15 14644

3 0.1670 9 0.6168 16 1,7144

4 4 0.2295 10 0.7188 .17 2.0477

5 0.2962 0.1 .8299 18 2.5477

6 0.3676 12 0.9549 19 3.5477V13 1.0977
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TAKlE 3a (Con't.)

1 0.0500 6 o.3462 11 0.7687 16 1.5314

2 0.1026 7 0.4176 12 08W9 17 17644

3 0.1582 a 0.4945 33 1o0049 1s 2O977

4 0.2170 9 0-5779 14 1.1477 19 2°5977

5 0.2795 10 0.6688 15 1344 20 3.5977

n - 25

Is r r r

1 0.0400 a 0.3764 14 0.7961 20 1,5326

2 0."817 9 ).4352 15 0.8m's 21 1.7326

3 0.1251 .0 C, .4977 16 0.9870 22 1.9826

4 0.1706 11 0.5644 17 110981 23 2,3160

5 0.2182 12 0.6358 18 1.2231 24 2.8160

6 0.2682 13 Co7127 19 1.3660 25 3.3160

7 0.3209

n -30

Jrr

1 0.0333 U 0,472 21 1.1660

2 0.0678 12 0.4999 22 1, 2771

3 0.1035 13 0.5554 23 1.4021

4 0.1406 14 0.6v3a 24 1.5450

5 0.1790 1, 0.6768 25 1.7117

6 0.2190 16 0.7434 26 1.9317

I7 7 0.2607 47 0.8149 27 2.1617

a 0.3042 0.893 28 2.4950

9 0.3496 19 0.9751 29 2.9950

30 0.3972 20 i.O660 30 3.950
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TAKE 34 (cat.)

t n.40
1s ' r~ I

1 C.0250 U O3169 21 0-73W 31 1.4496

2 0.0906 12 0.3534 22 0.7834 32 1.5607

3 0077 13 o.381 23 0.8390 33 1.6857

S 0.o040 14 0.4241 24 0.897 34 1o25

5 0.2328 15 04626 25 0.9603 35 1.9952

6 O.160a 16 0.5026 26 1.0270 36 2.1952

7 0o*97 17 0.5443 27 Lo0984 37 2.4452

8 0.2200 1 05877 28 1.1753 38 2.771

9 0.2513 19 0.6332 29 1.2587 39 3o2785

10 0.2836 2 0 o.6e 30 1.3496 40 4.2785

r" r" r r

I 0.020 16 0,3810 31 0.9515 16 2,1.59

2 0.04P4 17 0,,4104 32 1.0041 47 2.6659

3 0.0612 18 0.407 33 1.0597 48 2.9992

4 0.0625 19 0.472D 34 1o1185 49 3-4992

5 0.043 Zo 0.5D42 35 1.1830 9D 4.4992

6 0.1265 21 0.5376 36 1.2476

7 0.2492 22 0.572D 37 1.3191

8 0-1725 23 0.6077 38 .13960

9 0I1963 24 o 6448 39 1.4793

10 0.22D7 25 0.6832 40 1.5702

U1 0.24" 26 0.7232 43 1.6"702

12 6 .2Wa 27 0o7649 42 I-oM

13 0."%6 2 o.eof' 43 1.-%W

.u 0..V" 29 0.8"0 4 2.049

L 2. s -P o.0s 0o..9015 4,5 2.2159
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TAMl 36 (Can't.)

r r

1 0.0167 21 0.4263 41 1.1321

2 0.0336 22 0.4520 42 1.w*48

3 0.0509 23 0.473 43 1.2403

4 0.0684 24 0.5053 4 1.2991

5 0.0863 25 0.5331 45 1.3616

6 0.1044 26 o.5617 46 1.4283

7 0.1230 27 0.5911 47 1.4997

a o.1416 28 0o6214 48 1.5767

9 0.1611 29 0.6526 49 1.6600

10 0.2807 30 0.6649 50 1.7509

u 0.2007 31 071=2 1 1.89D9

12 0.2211 32 0.7527 52 1o9620

33 0.2419 33 0.7884 53 2.0870

14 0.2632 34 0.8255 54 2.2299

15 0.2849 35 0.8639 55 2.3965

16 0.3071 36 0.9039 56 2.5965

17 0.3299 37 0.9456 57 2.8465

18 0.3531 38 0.9891 58 3.1799

19 0.3769 39 1.0345 59 3.6799

20 0.4013 40 1o01 60 4.6799

L2
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?A1 (C't.)

1 O.OwA 19 0-3w4 37 0.7410 55 1.5"4

2 o.o6 2D 0.336 3 0.773 56 1.-53

3 0.O&5 21 0.3536 39 0.8000 57 1.6P27

4 0.04 22 0.3740 0 0-378 58 1.7296

5 0.0736 23 0.3949 41 0.8322 59 1a30

6 O.O*9 24 0."161 42 0.9057 60 1,9039

7 0.106 25 0..379 43 0o914 61 2.0039

8 0.1204 26 o.46M01 44 0. 9784 62 2MIX5o

9 0.2366 27 o.1, 45 i.069 63 2o2400

310 0.1530 28 O.61 46 1.0569 64 2.3M

Ii 0.1696 29 o.5229 47 1.0985 65 2.95

2 32 0.1666 30 0.553 48 1.1420 66 2.7495

13 0.2038 31 0.59 49 1.1$75 67 2.9995

14 0.22U 32 0.6049 50 1.2351 68 3.332

15 0.2392 33 0.6333 51 1.2851 69 3 M8N

36 0,2574 4 0.6583 52 1.3377 4.6328

17 0.2759 35 0.66 _56 1.393

16 0.2%0 36 o.7. 5 1.4521

C



C) TABI, 3a (.omt.)

r r r r

1 0.012 21 0.3023 41 0,71.19 61 1,4177
2 0°0252 22 0.3192 42 0073?6 62 1o4/4

3 00380 23 U,3365 43 0.7639 63 1.5239

4 0.0510 24 Oo3W 44 0.7909 64 1.5W

5 0.0641 25 03719 45 0.8187 65 1.6473

6 0.0775 26 0.3900 46 0.8473 66 L,7139

7 0.0910 27 0.4066 47 0.8767 67 1.7853

8 0,1047 28 o027 48 0.9070 68 1.8623

9 0.1185 29 0.4467 49 0°9382 69 1.9456

10 01326 30 0,4663 5D Oo9W5 70 2.0365

S 0o169 31 0.4863 51 1o0038 71 2,.1365

12 o1614 32 0.5D67 52 .0363 72 2,2476

13 0°1761 33 0.5275 53 1.0740 73 2,3726

14 0o1911 34 0oa 54 1.13. 74 2.5155

15 0.2062 35 05705 55 o1J495 75 2.6821

16 0.2216 36 -0.5928 56 1o1895 76 2.821

17 0.2372 37 0.6155 57 1,2312 77 3.1321

18 0.2531 38 0.6387 56 1.2747 78 3.4655

19 0.2692 39 0.6625 59 1o3201 79 3.9655

2 0.2856 40 0.6869 60 1.3677 80 4.9655
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TA M 3& (bolt..)

.- 90 1
r r r r1

1 0.0111 26 0."07 51 0,8290 76 1.931

2 0.223 27 0.33 52 0.8^47 77 1.9024

3 0.0337 2 0.3702 53 0,80 78 1.97%

S0452 29 0363 5 0.980 79 2.0627

5 0.0%q 30 0.4027 55 0.9358 80 2.1536

6 0,0686 31 0.4194 56 0.9644 81 2,2536

7 O.OSo5 32 0.4363 57 0.9938 82 2.3647

a o0926 33 0,4536 58 1.0241 83 2.4897

9 0.1047 34 04721 59 1.0553 84 2.6326

10 O.71 35 0.4890 60 1o0876 85 2,7992

11 0.1296 36 0.5D71 61 11209 86 2.9992

22 0.1.22 37 0.5257 62 1.1554 87 3.2492

13 0,1551 38 0.5445 63 1.1911 88 3.5825

1 0.1601 39 05637 64 1.2282 89 4.0826

15 0.1812 40 0.5834 65 1.2666 90 5.0826

16 0.1945 41 0.034 66 103066

17 0.01 42 0.6238 67 1o3483

is 0.222.i 43 0641.6 68 1.3918

19 02356 1. 0,6659 69 1.4372

2D 0,2497 45 o,6876 0 1.4848

21 0.2640 46 0.09oe 71 1.94

22 0.2785 47 0.326 72 1,675

23 0,2932 48 0.7558 73 1,6430V240041949: 7m6 .725 0o,= 9D o.SDr0 75 l.Mo
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Tam 3A (em't.)

I 0.o1M 26 0.2994 la 0.'1m 76 IA.M

2 0.001 27 0.3129 2 o.726 77 1.4531

3 0,0303 201 0.3266 5 0.71.94 78 1..6

1. 0.0406 29 0.305 54 0.7'07 79 1.5%W

5 0.0510 30 0.3545 55 O. 8o 158m

6 o.o616 31 0.36M 56 0.08247 e 1.6396

7 0.07 32 0.38 3 57 0.8374 82 1.6923

8 0.0829 33 0399D 5 o.606 83 1.7478

9 0.0938 31 o,430 59 O.81 94 1.8066

10 0.1046 35 0.4201 60 0.9m 85 1.8691

11 0,1.59 36 0.4135 61 0.9338 86 1-9358

12 0.1272 37 0.4591 62 0 95 87 2.0072

33 0,3 5 38 0.479D 63 0.9858 as 2.0042

14 0,1500 39 0,491 6A 1,0121 89 2.1675

15 0.1616 40 0.,075 65 1.o006 90 2.21

16 .1734 41. 0.542 66 1.0692 91 2,34

17 0.153 42 o.5n 67 1.0986 92 2.4695

IS 0.1974 43 0.5514 66 1.1289 93 2.5945

19 0.2096 4 0.5759 69 1.1601 94 2.7374

20 O.2219 45 0.5936 70 119 95 2.9040

23. 0,234 46 0.6219 71 1,2257 96 3.1040

22 0.2471 47 0.6305 72 1.2602 97 3.350

23 0.2"99 4 0.6493 73 1.2959 98 3.6674

24 0.2729 49 o.666 74. 0 99 4.187.

25 0.2860 5D 0.68 75 1.3724 IM0 5.2874
IMRL Find the expected wfting tim for the 10M failuw. In a ample of aim 2D.

Ag"i that C _ 100 boWg.

§gj~g:.This mearm E(Xr. (.66W8) 1000 ,668.8j hours.
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TALE 3(o)

Ratio of Expected Waiting Tim. to Observe the rt h Failure in

Samples of Size n and r , Respectively.,
0(rn E(X )/E(X

,~n r~n r. r

r 1 2 3 4 5 10 15 20
-

1 1 .50 °33 °25 02o 010 .067 .050
2 1 .56 .39 a30 .l4 .092 0o68

3 1 .59 .43 .18 .12 O87
4 i .62 .23 .1), .o

5 1 o28 .18 .125

10 1 .35 a23

ExwUple: Compare the expected waiting time to observe the 10th failure

in a sample of size 20 with the expected waiting time to observe

the 10th failure in a sample of size 10. The answer is 1O,20 -. 23

i

I

L It



a.xoo

Table h(a)

Values of -(2r)E(X )/2r for 4L .01

- J

2- 3 r - hr 5 6i Ti ir 9r lO_ o ,

1 .005 .003 03 ,02 .002 .00. .001 .001 001 C0005

2 .Oh .027 o2o x,16 .013 .011 .010 008 0oo8 ,h

3 .089 ,055 o1)o 0O1 .026 .022 .019 .017 oOWS .007

.131 0079 ,057 o415 .037 .031 o027 .024 .021 <01]

5 -165 ,100 .072 .056 .Oh6 .039 .034* o030 ,027 .013
6 .195 a117 ,o8S o65 -05h 0oh5 .039 o035 0031 .015
7 o219 .131 091h .073 .060 .051 .0), .039 0035 017
8 .241 .13 .103 .080 .065 0055 ,,o8 o42 0038 019

9 .260 .155 -io .86 007o .06o .052 oOh6 Oohl 0020
10 .276 164 117 oo91 .075 .o6-3 .055 oh8 oO),3 Jo2M

15 .337 '199 11* .110 .090 -076 X066 ,o58 .052 021;

20 .377 .222 158 .123 .101 .o85 .07h ,o65 C1058 02e

25 0.i6 .239 170 .132 .108 .091 c079 .070 ,o6? o03o
30 .428 0252 179 .139 .U1. .096 .083 .07 O 066 (;3?

ho .1o 270 192 .1b9 .122 .103 .089 .079 .070 :Lo3b
5 o .482 ),283 -201 156 .128 .108 0094 .082 .07h t036

75 .518 ,30h ,.216 .167 .137 .116 loo .088 6079 :o3
100 .51O 316 0225 o11 .11*2 .120 .10 .092 082 -C)h

Remark: Truncated non-replacement tests of the form accept if

X 1 )T 12 (2r)(X Or2 have virtually the samie 0.c.. curve as
rmn T - - rn

testa~~~ ~ ~ ~ ~ oftefomaopti C-0 ( (2r)/2r .In the ahiovet:. n 0 -- 0C
tables oc (the type I error) is .01 . when 9 a 9

Invzez Conaider a non-replacement situations where we start with n a 18 items
where r w 6 , go i 1000 hours and u a *01 . The test procedure 1
acept if X6218 o 117 -In worde Aoept if the 6th failure has not yet
occurred by 117 hours and reject if the 6th failure occurs before 117

hours have elapeed. Such a plan will accept. a lot with =ean life 1000
hours with probability o99.

I_
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Table 4(b)

Values of X2 (2r)l(Xr )/2r for c6 a .05

2r 4w Ar 5r 6r 7r 8r 9r lOr ,Or

1 .C26 .01? .013 .010 .009 .007 .006 .006 .005 0o03

S .104 .o6 .048 .038 .031 .026 .023 .020 .018 .009

3 .168 .103 .075 .058 .048 .041 .036 .031 .028 .014

4 .217 .132 .095 .074 .061 .052 .45 .o4o .o36 .0i?

5 .254 153 . .o 6 .o86 .060 .05o .04 .o41 .m0

6 .284 .1?0 .122 .095 .078 .066 .05? .051 .045 .022

7 .3 .185 .132 .103 .o84 .072 .062 .055 .049 .024

8 .330 .197 .1a41 .11o .90 .o76 .066 .058 .052 .025

9 .348 .207 .148 .115 .o94 .o80 .o69 .x61 .055 027

10 .363 .216 .154 .120 .o98 .o83 .o72 .o64 .057 ,028

15 .417 .246 .175 .136 .112 .094 .082 .072 .065 ,032

20 .451 .266 .189 .147 .120 .102 .088 .078 .070 .034

25 .475 .280 4199 .154 .126 .07 l 093 082 073 o36

30 .49.3 .290 .2o6 .16o .13. .11 .096 .085 .076 o37
40 .519 .305 .216 .168 .137 .u6 .101 .089 .0?9 039

50 .536 .315 .223 .173 .142 .n0 .1o4 .092 .082 .040

75 .564 .331 .235 .182 .149 .126 .lo9 .o96 .o86 .x42

100 .l .34o .24z .187 .153 .130 .112 .099 .o89 ,o4o

Reok: Truncated tests of the form, accept if I > T a 0 2 (2)S(Xr)/2r

have virtually the same O.C. curve as tests of the form, accept if

A2

01.. > C % Xl.., (2r)/2r , In the above table, o (the Type I error)

is .05, when e a %

Exemple: For- a = 18 , r a 6 , 0 a 1000 hours, and .. 05, the acceptance

region is: Accept ifX6,18 17016,1 > 170,ou,,.

* L
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Table 4(c)

Vales of X2. (2r)5(lrn )/2r for t6 * .10

2J Zr 3r 4r - r 6r 7r 8r 9r lOr 20r

1 .053 .035 .026 .021 .018 .015 .013 .O12 .021 .005

2 .1" .098 .0o7 .056 .046 .039 .034 .030 .027 .013
3 .226 .139 a1ol .079 .o65 .% .o48 .02 .038 .019

.277 .168 .121 .o95 .078 .066 .057 .051 .045 .022
5 .314 .189 .136 .106 .087 .07* .064 .057 .051 .025

6 .343 .206 .1*7 .115 .o94 .o8o .o69 .o6i .053 .027
7 .366 .219 .157 .122 .100 .o83 .074 .065 .058 .028
8 .386 .230 .164 .128 .105 .089 .' .068 .061 e030
9 .402 0239 .171 .133 .109 .092 ,080 .071 ,063 ,031

10 .416 .2*7 .176 .137 .112 .095 .o82 .073 .065 ;032
15 .65 .275 .196 .152 .12* .105 .o9 .o8 .o72 .035
20 .494 .291 .207 .161 .132 .12 .097 .085 .076 .037
25 .515 .303 .216 .167 .137 .116 .100 .089 .079 .039

30 .530 .312 .222 .172 .141 .19 .103 .091 .081 .040

40 .5.52 .32* .230 .179 .14 .12 .107 .094 .08 .041

50 .567 .333 .236 .183 .150 .127 .110 .097 .087 .o42

75 .90 .346 .21+5 .190 .156 .132 .114 .101 .090 .04*

100 .604 .-33 .251 .195 .1-59 ,135 .117 .103 .092 .045

Remark: Truncated toots of the form, accept if

> T a %X 2  (2r)Z(X ,)/2r have virtually the same o.C.
Xrou >00 r()

curve as tests of the forms, acept if rqn > 0 a 9c 0 ( )/2

In the above table, ot (the Type I error) is .10, when 0 % 00

j lzemple: For a= 18 , r a 6 * 00 a 1000 hours, and o. .10, the aoeeptan@.

reion in: Accept if X698 > 206 hours.
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-~ 'Table 4(d)

Values of X 124 (2r)EXr,n)/Zr for o- .25

2r 3r 4r 5r 6r 7r 8r 9r lO 20r

1 .144 ,096 .072 .058 .048 .041 .036 032 .029 .014
2 .281 176 .129 .102 .084 .o71 .o62 .055 .049 .024
3 .355 .218 .158 .124 .102 .087 .o"5 .067 .o60 029

4 .502 .244 .176 .138 .113 .096 .083 .074 .066 .032

5 .435 .262 188 .147 .121 .102 .089 .078 .070 .034
6 .459 .276 .197 .154 .126 .107 .093 .082 0?3 .036
7 .478 .286 .205 .159 .131 .111 .o96 .x85 .076 037

8 .493 .294 .210 .164 .134 .114 .o99 .087 .078 .038
9 .506 .301 .215 .168 .137 .116 .101 .089 .080 .039

10 .517 .307 .219 .17. .14o .118 .102 .091 .081 oO4O
15 .552 .326 .232 .181 .148 .125 .108 .096 .086 .042

20 .573 .338 .24o 187 .153 .129 .112 X099 088 .x43
25 .587 .345 .246 .191 .156. .132 .114 .101 .090 .044
30 .597 .51 .250 .194 .159 .134 .116 .103 .092 .045

40 .61 .359 .255 .198 .162 137 .119 .105 .o94 .o46
50 .620 .364 .258 .201 .164 .139 .120 .106 .095 .o46
75 .635 .372 .264 .205 .168 .142 .123 .108 .097 047

100 .643 .377 .267 .208 .170 .143 .124 .110 .098 .048

Remark: Truncated tests of the fora, accept if
x 2  (2).(x>.o)/2. have virtually the me o.C.

oure as toots of the fora, accept it > C a oX (2r1/.r

In the above table, c (the Typ I errr) Is .25, when 0 a soIMUMipes For a a 18 , r a 6 , Oo a 1000 hours, and e6• .25, the aooeptance

t +region is: Accept if X6,18 > 276 hours.
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Table 4(e)

Values of X2.(2r)E(Xrn)/2r for *6 .50

2r 3r 4r 5r 6r 7r 8r 9r lOr 20r

1 .346 .231 .173 .139 .116 .099 .08? .077 .069 .035

2 .489 .308 .225 .177 .146 .125 .108 .096 .086 .042

3 .349 .338 .244 .192 .158 .134 .1iL .lo3 .092 .045

4 .582 .354 .255 .199 .164 .139 .121 .107 .095 .047
5 .603 .564 .261 .204 .167 .142 .123 .109 .097 .048

6 .617 .370 .265 .207 .170 .144 .125 .110 o099 .048

7 .628 .375 .269 .209 ,172 .145 .126 .111 .100 .049

8 .636 .379 .271 .211 .173 .146 .1.27 .112 .100 .049

9 .641 .382 .273 -1 . ,174 .147 .128 .113 .101 .049

10 .647 .384 .274 .213 ,175 .148 -128 .113 .101 .050
15 .662 .391 .279 .217 ,177 .150 .130 .115 .103 .050

20 .669 .394 .281 .218 .178 .151 .131 .115 .103 .050

25 .674 .397 .282 .219 .179 .152 .131 .116 .104 .051

30 .677 .398 .283 .220 .180 .152 .132 .116 04 l051

40 .681 .Am0 .284 .221 .180 .153 .132 .117 .104 .051

50 .683 .401 .285 .221 .181 4153 .132 .117 .104 .051

75 .687 .403 .286 .222 .181 .153 .133 .117 .105 .051

00 .689 .403 .286 .222 .182 .15. 13 3 .17 .105 .051

Remark: Truncated tests of the form, accept if

Xrja > T - o1_, (Zw)E(Xron)/2r have virtually the same O.C.
2curve an tests of th. form, accept it > C a aX (2w)/2wOrn 0 1-C

In the above table, oc (the Type I error) is .50, when 0 a 0

Ixmple: For a a 18 , r m 6 , So = 1000 aours, and w -a .0 ,the acceptanee

region is: Accept if X6,18 > 3?0 hours.
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( Table 5

Values of r and X2 (2r)/2r such that the aooeptance region
1

*3*n > o X2  (2r)/2r is such that L(%o) a I -o6 and L(o1 ) < id
0 I-at

Of.• a 01 -001 04M..01 ad .01

A n 0 ..... 0 5 A.. 10

. 1 1I . I _ 1 1

3/2 136 .8114 101 .7831 83 .7625 60 .7244
2 46 .6892 35 .6492 30 .6A7 22 .5715
3 19 .5445 15 .4985 13 .4692 110 .4130
5 9 .3897 8 .3633 7 .3329 5 .2558

10 3 ,2558 4 .2o58 4 .2058 3 .1453

ace .05 e a .05 e = .05 o .05
,8U .01 is .05 t= .10 . .25

3/2 95 .8374 67 .8079 55 .789o 35 .7391
2 33 .7319 23 .6834 19 .6548 13 .5915
3 13 .5915 10 .5426 8 .4976 6 4355
5 7 .4694 5 .3940 4 .3416 3 .2725
10 4 .3416 3 .2725 J3 .2725 2 17

Ce . .10 .10 a= .10 04S 010

48.01 l~.05 ISml *1 I a.25

3/2 77 .85 52 .8269 41 .8058 25 ."38
2 26 .7583 18 .7123 -15 .6866 9 .6036
3 3.1 .6383 8 .5820 6 '5253 4 .4363
5 5 .4865 4 .436 .3673 3 .3673

10 3 .3673 2 .2660 2 .2660 2 .2660

o~.25 ce a.25 ce a .25 Ou.25
S.o1 '.o5 ,19M .1o8 a .25

3/2 52 .9033 32 .8758 23 .8526 12 .7932
2 17 :82" 11 .7836 8 .7445, 5 .6737
3 7 .7261 5 .6737 4 .6339 2 A4we
.5 3 .58 2 88 .4808 1 .2875

10 2 .48o8 2 .4808 1 .287 1 .2873
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(74

kxample nid a life test which possess.s the following O.C. our v:

If the mean life in 0 a 900 hours, it is accepted with
0

probability .95; if the mean life in 01 a 300 hours, it is

accepted with probability S .0.

Solution: In this example 00/01 = 3 , oe= .05 , and 6= .10 , therefore

the required number of failures is r = 8 . The region of

acceptance in given by 8,n > (900)(.4976) 4,8 . In words:

Stop life testing after 8 failures have occurred. If the mean

life based on the 8 failures "Uhat have occurred > 448, accept;

otherves*1 reject.

I
Ic
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Table 6

Vlue of n , the sample size, needed in truncated replacement
prooeduree.

o .01 Od .01 .01 .05

3 5 10 20 3 5 10 20

3/2 331 551 1103 220? 237 395 790 1581
2 95 158 317 634 68 113 227 454
3 31 51 103 206 22 37 74 149
5 10 17 35 70 8 14 29 58
10 40 6 12 25 3* 4 8 16

cc .01 le.10 a= .01 /13 .25

3/2 189 316 632 1265 130 217 434 869
2 56 93 187 374 37 62 125 251
3 18 30 60 121 12 20 41 82
5 7 11 23 46 4 7 13 25
10 2 4. 8 16 2" 2 4 8

04 'o5 a .o1 oc -= .05 16 .05

3/2 238 397 795 1591 162 270 541 1082
2 72 ~120 241 483 47 78 157 314
3 23 38 76 153 16 27 54 108
5 9 16 32 65 6 10+  19 39
10 4 6 13 27 3* 4 8 16

.. 05 ,ia.10 =.05 /S= .25

3/2 130 216 433 867 77 129 258 517
2 37 62 124 248 23 38 76 153
3 11 19 39 79 7 13 26 52
5 4 7 13 27 3* 4 8 16
10 3" 4 8 16 1 2 7I a .10 .01 OC..1o . .05

3/2 197 329 659 1319 128 214 429 8"
59 98 197 394 38 64 128 2.56

v21 3 70 140 13 23 46 93
57 12 24 48 5 8 17 3410 3 5 U1 22 20 3* 5 10
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Tabe 6 (tont'd)

04 a ./ t a ..... 10 . ... .
0

3 5 10 20 3 5 10 20

3/2 99 165 330 660 56 94 188 376
2 30 51 102 205 16 27 514 108
3 9 15 31 63 5 8 17 34
5 4 6 11 22 3 11 22

10 20 2 5 10 1 2 5 10

cc .25 au .01 a a .25 A..05

3/2 140 234 469 939 84 3.40 28o 560
2 42 70 140 281 25 43 86 172
3 15 25 50 101 10 16 3.3 67
5 5 8 17 3 1* 50 100 19

10 2 4 9 19 2 4 9 19

4a .25 (S .10 a4u .25 B...25

3/2 58 98 196 392 28 47 95 190
2 17 29 59 119 10 16 33 67
3 7 12 25 50 2 4 9 3.9
5 3* 4 9 .9 V* 2* 3 6

10 1. 20 3 5 1 1 2 5

k: It was indicated that If one uses the o in table (5) and sets

the sample ao2 , then it may happen that while

kL(O o) 0 .- a l L(O1 ) msy be slightly > P One way of getting around this

is to use n1 Items (rather than n items) and to use the slightly smaler

truncation time S...J2wo)/2( l). The test based on

CI - T" ) will have L(% ) a 1-v and L(S1) <. In the above

table such an adjustment had to be made in the following ocases.
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Table 6 (ont'd)

,,0 ,e %,T/0 (n+l) T"/To
__ __ 0_ _ 00. .

.01 .01 3 10 4 .59

.01 .05 3 10 3 23

.01 .25 3 5 4 .959

.01 .25 5 5 7 .914

.01 .25 10 5 13 .984

.01 .25 3 10 2 .654
005 .05 3 5 6 .985
.05 .05 5 5 10 .985
.05 .05 3 10 3 .88
.05 .10 5 5 7 .976
.05 010 3 10 3 .818
.05 .25 3 5 .818
.05 .25 5 10 2 .889
010 .05 3 10 2 .798
.10 .05 5 10 3 .887
.10 .10 3 5 4 .827
.10 .10 5 5 6 .918
.10 .10 3 10 2 .798
.25 .05 3 5 3'.962
5 .05 5 5 .962

.25 .05 10 5 10 .962

.25 .10 3 5 3 .962

.23 .10 3 10 1 .863

.25 .10 5 10 2 .719

.25 .10 10 10 . .958

.25 .25 3 5 1 .863

.25 .25 5 5 2 .73.9

.25 .25 10 5 .958

.25 025 20 5 6 .958

.25 .25 3 10 1 .863

Ezample: Find a truncated replacement plan for which T 500 hours,

which will accept a lot with mean life z 10,000 hours at least 90 percent

of the time and reject a lot with mean life = 2,000 hours at least 90

percent of the time.

Solution: In this case 00 a 10,000, B1 a 2,000, a a o 10. Since

0 /a 359a-p.lo0 we see from Table 5 that the rejection number is o-0 3.

Corresponding to 0/0.,5, O/To.20,. ' * =.109 one seem from Table 6

S that the sample size is n=22.
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Table 6 (cont'd)

Avis the derived truncated replacement plan meeting the requirements

is as foillowt Start the life test with nu22 items. As soon as an
item fails replace it by a new it.s Accept the lot iff: min(X,,u2500) a
0) (iee., if 3 failures have not occurred by 5;00 hours, stop life

..testing and accept). Reject the lot if: mi .(. X,22 ;500)'= X3,22 ( I..

if the 3rd failure runs before 500 hours, stop at the third failure

and reject) .

.nEmle: Find a truncated replacement plan for which To = 500 hours,

which will accept a lot with mean life a 1500 hours at least 95% of

the time and reject a lot with mean life = 150 hours at least 95% of

the time.

Solution: In this case 6° 0 1500, 01 = l50, A .058

Since e 0/ 1 = ,05, we see from Table 5 that the rejection

number is r° a 3. Corresponding to 8o/6 n 10, 0 /T - 3,a 1l 0 0.4 up- =.05, one sees froa Table 6 that the appropriate sample sims

to use is 3. Since this number has an asterisk (0) attached to it

we see that we can actually use the smaller truncation time
T: = .818T0 a (.818)500 = 409. Thus the desired truncated replacement

plan eeting the requireaenta is as follows:

Start the life test with 3 items. As soon as an item fails

replace it by a new item.

Accept th. lot if: Min(X ;41 09) a 409 (i.e., if 3 failures have

sot occurred by 409 hours, stop life testing and accept).

Reject the lot if: Hin( X,,1409) a X 3, (i.e., If the 3rd failure

occurs before 09 hours, stop at the 3rd failure and reject).

L
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l o . m Table 7

Va~ues Of at tho sample site, seeded o trusoated ropisiesoat
prooedures.

a - 01 00..01 a, .01 to a .00

Go/ 1 3 3 10 20 3 5 1o 20

3/2 .03 622 1172 227 291 448 SU 1632
2 119 182 340 657 87 132 245 472
3 4. 61 113 216 30 45 82 157
5 15 22 39 74 13 18 62

10 6 9 15 28 4 6 10 :8

3/2 234 359 675 1307 162 248 465 899
2 72 109 202 390 49 74 137 262
3 25 37 6? 128 18 26 46 87
5 11 15 26 50 6 9 15 2
10 4 6 10 18 3 4 6 10

a , .,05 a .01 *A 605 It ,.0

3/2 289 447 843 1639 198 305 575 1116-
2 90.138 258 499 59 90168 326
3 30 45 83 160 21 32 59 113
5 13 20 36 69 8 12 22 4110 6 9 15 29 4 5 9 17

t| 05 ... 10 it.0, .25

3/2 159 245 462 95 96 147 276 535

3 16 24 U 831 16 29 5
5 6 9 15 29 4 5 9 1

10 4 5 9 17 2 2 48

t .10 $.01 4K 10 .. 05
3/2 238 369 699 1358 156 242 456 886

2 73 12 210 407 48 73 137 265
327 40o 7 14,5 18 27 50 97

10t 14 26 51 7 10 19 36
10 5 7 12 23 2 3 6 1n



Table 7 (cost d)

etaI.if0 p"10 -a.10 a -25

*00 /T 3 3 10 20 3 : 1o : 0

3 /2 12 1.86 331. 681 69 107 201 389

3/20

2 39 . 9 110 213 21 31 58 113
3 121 6 34 67 1019 36
5 3 7 12 23 5 7 12 23
10 2 3 6 Uo 2 6 u

*is.23 a 001 eta 25 on '05

3/2 168 261 "O'S 965 101 156 296 576
2 51 79149 289 31 418 91 177
3 19 29 5*1 105 12 19 36 69
3 6 10 18 36 3 5 10 20
10 3 5 10 20 3 5 10 20

a .2 0 P .10 e u a .25 on 2

3/2 71 110 207 '03 34 53 101 196
2 22 33 63 123 12 19 36 69
3 9 14 -27 52 3 5 10 20
5 3 5 10 20 1 1 3 6

10 1 1 3 6 1 1 3 6

tho Find a truncated soo-replacemet life test for which Tep50

hours, which will accept a lot with sen life a 10,000 hours at least 90%

of the t.e and rejet a lot with mean life a 2,000 hours at lofet 90%

of the time.

elvAlias In this case *109000, 01 *2,0009 oca =*lO. Sinso00e,

Crresponding to *0/01,39 S*pTO20, 4 A=, m.10, one *so from Table 7 that

the saMple size ns3 . Thus the derived trunated so-replaceseat pla

j meting the reqiuirements is as follows: Start the life test wIth sA23

item. Don't replace Items as they fail. Accept the lot it f i(1 3 3 50

500 (&.e., It 3 failures have not occurred b7 500 hours, stop life testing

and accept) itjec t the. lot if tmin(X 39231300)6&3 #21 (i**., if the 3rd fail=re
occurs before 500 hours, stop at the 3rd failure and reject).
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Table 8

Values of ro (upper numbers) and of X2,(2r,)/2 (lower numbers) such

that the test based on using a sampling plan with sample mise equal to
C A .. (2rO)/2p03 and with rejection number r°  will have an OC curve such

that L(p )ml- and L(p 1 ) < 0. L(p) is the probability of accepting a

lot having fraction defective p.

Pl/Po 0 .1 0( = .05 C< =10l
- - - l ,l. -,,, - -J.. -

j .01 .05 .10 .01 .05 .10 .01 .05 .10

3/2 136 101 83 95 67 55 77 52 41
110.4 79.1 63.3 79.6 54.1 43.4 66.0 43.0 33.0

2 46 35 30 33 23 19 26 18 15
31.7 22.7 18.7 24.2 15.7 12.4 19.7 12.8 10.3
/7 21 18 19 14 1 15 11 9
16.4 11.8 9.62 12.4 8.46 6.17 10.3 7.02 5.43

3 19 15 13 13 10 8 11 8 6
10.3 7.48 6.10 7.69 5.43 3.98 7.02 4.66 3-15
12 10 9 9 7 6 7 5 4
5.43 4.13 3.51 4.70 3.29 2.61 3.90 2.43 1.75

59 8 7 7 5 4 5 4 3
3.51 2.91 2.33 3.29 1.97 1.37 2.43 1.75 1.10

10 5 4 4 4 3 3 3 2 2
1.28 .82 .823 .137 .81 .818 1.10 .53 .532

Examole: Find a life test having the following properties; I
acoept at least 90% of the lots for which the probability of failing before

asoe time To  is < .01 and will reject at least 95% of the lots for

jwhich the probability of failing before T > .10.

Solution: In this problem, poOw.1, pla.l0, o =.10 and A =05. Thus

Pl/P0 a 10 and so we see from Table 8 that ram2 and NE-[532/oO1353.
Thus the life tst is as follows: Place 53 items on test. If 2 or more
failures ocour before time To, reject. If one or fewer failures occur

before time T, accept.
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Table 9

Values of ho0 hI , and a for various values of A v p, and 91. The normalised

value, Bo=1, is used.

0 */ 1=/ 1 /3i..,i. -n ho hi 1"o h. h ,o hi

0.01 .O 9.1902 9.1902 4.5951 4.591 ,.29?6 2.976
.01 .05 5.9714 9.1078 .2.9857 4.5539 1.4928 2.2769

.05 .01 9.1078 5.9714 4.5539 2.9857 2.2169 1.4928
o05 05 5.8889 5.8889 2.9444 2,9444 1.4722 1.4722

2/3 .8109
1/2 .6931

1/3 .5493

ExaMple: Find a sequential life test for the case when o u.05, A=o05,

o =300 hours and 01=100 hours.

Solution: For this case, ho=hl=1.4722 (sinCe a 1 if e is normalized
- o. 3 0as 1 ), and so.5493.

Therefore the region (35) is given by:

300[-164722+.5493r] < V(t) < 30011.4722+.5493r]

simplifying this gives:

-442+165r < V(t) < 442 165r

The life test is continued so long as V(t), the total observed life up to

time t, satisfies both inequalities. As soon ar the inequalities are

Vi'tl d , one accepts H (i.e., 0o.300) if v(t) > 442 + 165r and

one rejects Ho (i.e, accepts T (al=l00) if V(t) < -442 + 165r
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C Table 10

Approzioato vAuos of E,(r) for sequential tosts for various values ofIk=9 /010,n
.=o/ 1l 0 and p

3/2 I I /0., _/ 23

01.o_ .01 .05 01 05

0 .01 12 8 7 5 5 3
.05 12 8 7 5 5 3

e .01 62.4 4o.3 23.3 15.1 1o.4 6.74
005 60.4 36.7 22.6 13.7 10.1 6.14

0 o01 128 82.7 43.9 28.3 1?.5 11.3
.05 82.7 52.7 28.3 18.o 11.3 7.18

.01 47.6 44.2 14.7 13.6 5.00 4.63

.05 30.8 28.0 9.48 8.64 3.23 2.94

co any 0 0 0 0 0 0

Eamle: Find Eo(r) if cne is testing 0/01 = 3 with a =.05, and

,6 =.O,.

Solution: The expected number of items failed in reaching a decision

when 9=9, is E0 (r) = 2.94.I
II
£
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